SUPPLEMENTAL DATA TO:

CRYSTAL STRUCTURE OF THE MINOR PILIN FCTB REVEALS DETERMINANTS OF GROUP A STREPTOCOCCAL PILUS ANCHORING*

Linke, Christian^{1,2}, Paul G. Young^{1,2}, Hae Joo Kang^{1,2}, Richard D. Bunker^{1,2}, Martin J. Middleditch^{1,2}, Tom T. Caradoc-Davies⁴, Thomas Proft^{2,3} and Edward N. Baker^{1,2}

¹School of Biological Sciences, ²Maurice Wilkins Centre for Molecular Biodiscovery and ³School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; ⁴Australian Synchrotron, Clayton, Victoria 3168, Australia

Running title: Crystal structure of the minor pilin FctB

Address correspondence to: Edward N. Baker, School of Biological Sciences, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand. Phone +64-9-373-7599. Fax +64-9-373-7414, E-mail: ted.baker@auckland.ac.nz

TABLE S1

Isopeptide bond between Spy0130 and Spy0128. Daughter ions of the fragmentation of the parent ion LGETEK₁₄₆SELIFK and DFEVPT₃₁₁ (m/z 694.68³⁺) which are covalently linked through Lys-146 and Thr-311.

Observed	Charge	Calculated	$\Delta_{\text{obs-}}$	Proposed structure	Ion type
(m/z)		$(m/z)^a$	calc		
147.11	+1	147.11	0	K	y ₁
171.12	+1	171.11	+0.01	LG	b_2
235.10	+1	235.10	0	DF (-CO)	a_2^*
263.10	+1	263.10	0	DF	b_2^*
294.18	+1	294.18	0	FK	y ₂
300.16	+1	300.16	0	LGE	b ₃
392.13	+1	392.15	-0.02	DFE	b [*] ₃
407.25	+1	407.27	-0.02	IFK	y ₃
491.20	+1	491.21	-0.01	DFEV	b_4^*
520.35	+1	520.35	0	LIFK	y ₄
530.23	+1	530.25	-0.02	LGETE	b ₅
588.24	+1	588.27	-0.03	DFEVP	b [*] ₅
694.68	+3	694.70	-0.02	LGETEKSELIFK and DFEVPT (-	parent
				$H_2O^b)^c$	
697.36	+2	697.38	-0.02	LGETEKSELIFK	parent-b [*] ₆
736.38	+1	736.42	-0.04	SELIFK	У ₆
747.87	+2	747.91	-0.04	LGETEKSELIFK and T $(-H_2O^b)$	parent-b [*] ₅
787.40	+2	787.44	-0.04	LGETEKSELIFK and PT (-H ₂ O ^b , -H ₂ 0)	parent-b [*] ₄ -
					H_2O
796.39	+2	796.44	-0.05	LGETEKSELIFK and PT (-H ₂ O ^b)	parent-b [*] 4
845.95	+2	845.98	-0.03	LGETEKSELIFK and VPT (-H ₂ O ^b)	parent-b [*] ₃
856.43	+1	856.45	-0.02	LGETEK and PT $(-H_20^b)$	parent-y ₆ -b [*] ₄
901.47	+2	901.50	-0.03	LGETEKSELIFK and EVPT (-H ₂ O ^b , -	parent- b_2^* -
				$H_2O)$	H_2O
910.47	+2	910.50	-0.03	LGETEKSELIFK and EVPT (-H ₂ O ^b)	parent-b [*] ₂
1072.46	+1	1072.52	-0.06	LGETEKSE and PT $(-H_2O^b)$	parent-y ₄ -b [*] ₄
1185.55	+1	1185.61	-0.06	LGETEKSEL and PT (-H ₂ O ^b)	parent- y ₃ -b [*] ₄
1298.62	+1	1298.69	-0.07	LGETEKSELI and PT (-H ₂ O ^b)	parent- y ₂ -b [*] ₄
1445.64	+1	1445.76	-0.12	LGETEKSELIF and PT (-H ₂ O ^b)	parent- y_1 - b_4^*
1591.74	+1	1591.86	-0.12	LGETEKSELIFK and PT (-H ₂ O ^b)	parent- b_{4}^{*}

^aMonoisotopic mass, calculated using the web server

http://db.systemsbiology.net:8080/proteomicsToolkit/FragIonServlet.html ^bLoss of a water molecule to the covalent intersubunit linkage.

^cUnfragmented parent ion.

TABLE S2

C-terminal sequences preceding the sortase motif of pilin proteins. Sequences are shown for the pilin proteins from *Streptococcus pyogenes*, *S. agalactiae* and *Corynebacterium diphtheriae*. The sortase motifs are highlighted in bold face and proline residues in red.

Streptococcus pyogenes M1 strain SF370			
	~		
Spy_0125 ¹	NATVSKTGITSDETLAFENNKEP VVPTG	Minor pilin, tip	
Spy_0128 ²	STEQETSTDKDMTITFTNKKDF EVPTG	Major pilin	
Spy0130 ³	PEPHQPDTTEKEKPQKKRNGI LPSTG	Minor pilin, cell wall anchor	
Streptococcus py	ogenes serotype M3 MGAS315		
Cpa ⁴	KATKASVKEDETVAFENRKDL VPPTG	Minor pilin, tip	
FctA ⁵	KTDESADEIVVTNKRDT QVPTG	Major pilin	
FctB ⁶	VKPIPPRQPNIPKTPLPLAG	Minor pilin, putative cell wall anchor	
Streptococcus py	ogenes serotype M5 strain Manfredo		
Cpa ⁷	SASENVTADKEVTFENRKDL VPPTG	Minor pilin, tip	
FctA ⁸	KTDESADEIVVTNKRDT QVPTG	Major pilin	
FctB ⁹	VKPIPPRQPNIPKTPLPLAG	Minor pilin, putative cell wall anchor	
Streptococcus ag	alactiae strain NEM316		
PilA ¹⁰	EEGDKHLITNTHIPPKGI IPMTG	Minor pilin, tip	
PilB ¹¹	IAYDKGSVKKDAQQVQNKKVT IPQTG	Major pilin	
PilC ¹²	ETPPPTNPKPSQPLFPQSF LPKTG	Minor pilin, cell wall anchor	
Streptococcus ag	alactiae strain 2603V/R		
GBS52 ¹³	VPTPKVPSRGGLIPKTG	Minor pilin (Seq. ident. 29 % to PilC)	
GBS80 ¹⁴	DITVDSADATPDTIKNNKRPS IPNTG	Major pilin (Seq. ident. 22 % to PilB)	
GBS104 ¹⁵	IGYLEGNGKHLITNTPKRPPGV FPKTG	Minor pilin (Seq. ident. 43% to PilA)	

GBS59 ¹⁶	DYVANSNQKDATRVENKKVT IPQTG	Major pilin
GBS67 ¹⁷	YHEEGDKHLITNTHIPPKGI IPMTG	Minor pilin
GBS150 ¹⁸	ETPPPTNPKPSQPLFPQSF LPKTG	Minor pilin, cell wall anchor
Corynebacterium	a diphtheriae strain NCTC 13129	
SpaA ¹⁹	NESTNVLVEQKVKIDNKKKNAGFE LPLTG	Major pilin
SpaB^{20}	PGAPNVPSVPSPPSVTSPAPKKTPPRLAFTG	Minor pilin, cell wall anchor
SpaC ²¹	SGLITVEH <mark>P</mark> QGKPWLIKVANVSAST LPLTG	Minor pilin, tip
SpaD ²²	KDKFEGDDEVTLVSEIKNIKQGTPK LPMTG	Pilin, major pilin
SpaE ²³	PSTPPPGHTPPLRETPGSGDEKEREQGDLALTG	Pilin, putative cell wall anchor
SpaF ²⁴	SGQVQAKGEGDKMILTVADTTAGE LPKTG	Pilin
SpaG ²⁵	FTISKNGEEIVAGAFKNELGKGVK LPLTG	Pilin
SpaH ²⁶	AVKIGQTATTTYDAKVENVKRDTPDLPLTG	Pilin, major pilin
SpaI ²⁷	VPGTPKTPGKPDLPEKFRKEVTDR LGNTG	Pilin, putative cell wall anchor

NCBI accession numbers: ¹BAC20340.1, ²NP_268517.1, ³NP_268519.1, ⁴NP_663902.1, ⁵NP_663904.1, ⁶NP_663906.1, ⁷YP_001127700.1, ⁸YP_001127702.1, ⁹YP_001127704.1, ¹⁰NP_735915.1, ¹¹NP_735914.1, ¹²NP_735911.1, ¹³NP_687666.1, ¹⁴NP_687665.1, ¹⁵NP_687669.1, ¹⁶NP_688405.1, ¹⁷NP_688406.1, ¹⁸NP_688402.1, ¹⁹NP_940344.1, ²⁰NP_940342.1, ²¹NP_940341.1, ²²NP_938626.1, ²³NP_938628.1, ²⁴NP_938629.1, ²⁵NP_940534.1, ²⁶NP_940533.1, ²⁷NP_940530.1

FIGURE LEGENDS

FIGURE S1. Superimposition of the hydrophobic core of FctB (turquoise) and the N-terminal domain of the major pilin Spy0128 (3B2M, brown) in a stereoview. Sidechains of residues of the hydrophobic core are drawn in a stick diagram.

FIGURE S2. Circular dichroism (CD) spectra of FctB and Spy0130. The final spectra are the average of 5 measurements.

FIGURE S3. Sequence alignment of FctB from *S. pyogenes* strain 90/306S (cloned in this work) with the mature form of Spy0130 from strain SF370 (UniProt identifier Q9A1S0). N15 and Q69 participating in a hydrogen bridge in the hydrophobic core are highlighted by boxes, K110 by a grey box. Sequences were aligned using ClustalW.

FIGURES

FIGURE S1:

FIGURE S2:

FIGURE S3:

FctB	KDSTVQTSISVENVLERAGDSTPFSVALESIDAMKTIEEITIAGSGKASFS 51							
Spy0130	ENLTASINIEVINQVDVATNKQSSDIDETFMFVIEALDKESPLPNSVTTSVKGNGKTSFE 60							
	:: **.* <mark>*</mark>]:: * : *:*::* .: . :: *.**:**.							
FctB	PLTFTTVGQYTYRVY <mark>Q</mark> KPSQNKDYQADTTVFDVLVYVTYDED-GTLVAKVISRRAGDEEK 110							
Spy0130	QLTFSEVGQYHYKIHQLLGKNSQYHYDETVYEVVIYVLYNEQSGALETNLVSNKLGETEK 120							
FctB	SAITFKERRLVKEIPEROPDFERTELELA 139							
Spv0130	SELIFKOEYSEKTPEPHOPDTTEKEKPOKKRNGILPST 158							
	* : ** : * : *:*** .: *							