Gold(I)-Catalyzed Enantioselective Polycyclization Reactions

Steven G. Sethofer, Timo Mayer and F. Dean Toste

Supporting Information

General Information	S2
General Procedure for Enantioselective Polycylizations	S3
Experimental Details	S3
Additional Optimization Data	S14
Chiral HPLC Data	S16
NMR Spectra	S20

General Information

Unless otherwise stated, all commercial materials were used without further purification. Solvents were purchased from EM-Science and were dried by passage through activated alumina, except meta-xylene. Solvents used in polycyclization reactions were stored over 4Å molecular sieves. Silver tetrafluoroborate (AgBF₄), silver perchlorate (AgClO₄) and silver hexafluoroantimonate $(AqSbF_{6})$ were obtained from Aldrich Chemical Company and stored in the dark under an inert atmosphere. Silver salts kept under argon in a sealed vial and protected from light could be used several times before succumbing to deliguescence. Bisphosphine ligands were obtained from Solvias and Takasago. AuCl₃ was provided by Johnson Matthey. Chiral digold chloride complexes were prepared as previously described by previous work from this lab.¹ Complexes used for ligand optimization provided spectra in agreement with those previously described.² Except for the inhomogenous mixture arising in the synthesis of **2c**, small scale reactions were not stirred beyond a brief mixing upon addition of the catalyst. Thin layer chromatography (TLC) analysis of reaction mixtures was performed on Merck silica gel 60 F₂₅₄ TLC plates and flash chromatography was carried out on Sorbent Technologies 40-63 D 60 Å silica gel. ¹H and ¹³C NMR spectra were recorded with Bruker AVQ-400, AVB-400, AV-500 or AV-600 spectrometers using either CDCl₃ or C₆D₆, and are internally referenced to residual protio solvent signals. ¹H NMR multiplicities are reported as follows: m = multiplet; s = singlet; d = doublet; t = triplet; q =quartet. All ¹³C NMR spectra were obtained with proton decoupling. Enantiomeric ratios were measured by chiral HPLC employing a Shimidzu VP Series instrument equipped with SPD-M10A microdiode array detector using a Chiral PAK AD-H column.

General Procedure for Enantioselective Polycyclizations

A mixture of AgSbF₆ (0.8 mg, 2.2 μ mol) and the bisphosphine digold(I) chloride complex (3.32 mg, 2.22 μ mol) is suspended in 300 μ L of *m*-xylene in a sealed vial, and sonicated or stirred

magnetically for 15 min at room temperature). The resulting suspension is filtered through a glass microfiber plug directly into a solution of substrate (15 mg, 0.044 mmol) in 600 μ l of *m*-xylene, thourough mixing is ensured and the resulting homogenous solution is allowed stand until such time as the substrate was fully consumed as judged by TLC or ¹H NMR analysis. Determination of yield was made by calibration with an internal standard (9-bromophenanthrene) prior to addition of catalyst. Upon consumption of the starting material, an aliquot containing ca. 4 mg. of crude product was concentrated under a stream of N₂ until a thick oil was obtained. This was dissolved in 100 μ L C₆D₆ and concentrated under flowing N₂ twice, providing a residual oil free from excessive *m*-xylene which was subsequently analyzed by ¹H NMR. The product was isolated in analytically pure form by evaporation of the reaction mixture to a volume of ca. 100 μ L which was then eluted through a short silica column. Products **2a** and **15** provided crystals suitable for x-ray analysis, permitting assignment of the absolute stereochemistry. Notably, cyclization by the catalyst derived from (R)-DTB,MeO-Biphep(AuCl)₂ proceeded with the same sense of enantioselectivity in both cases. Crystallographic data provided

Experimental Details

 $(4R, 8R) \hbox{-} Diethyl-8-methyl-5-methylene-2-oxohexahydro-2 \emph{H-} chromene-2-oxohexahydro-2 \emph{H-} chromene-2-oxohexahydro-2-0 chromene-2-oxohexahydro-2-0 chromene-2-oxohexahydro-2-0 chromene-2-oxohexahydro-2-0 chromene-2$

7,7(3*H***)-dicarboxylate (2a).** Prepared from **1a** in accord with the general procedure for cyclization. Chromatography (1:1 hexanes : diethyl ether) provided a clear oil which was recrystallized by slow evaporation (3:2 dichloromethane : hexanes) to provide transparent crystals suitable for x-ray analysis, crystallographic data provided. ¹H NMR (600 MHz, C₆D₆): δ 7.07 (dd, *J* = 7.0, 1.4 Hz, 2H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.87-6.85 (m, 1H), 5.16 (d, *J* = 1.0 Hz, 1H), 4.73 (d, *J* = 1.1 Hz, 1H), 3.97-3.83 (m, 4H), 3.38 (dd, *J* = 13.5, 2.2 Hz, 1H), 3.16 (dd, *J* = 13.6, 2.1 Hz, 1H), 2.74 (d, *J* = 13.7 Hz, 1H), 2.58 (dd, *J* = 16.0, 12.8 Hz, 1H), 2.36 (dd, *J* = 16.1, 4.6 Hz, 1H), 2.24 (s, 1H), 1.04 (s, 3H), 0.86 (t, *J* = 8.0 Hz, 6H). ¹³C NMR (151 MHz, C-

₆D₆): δ 170.67, 169.91, 152.81, 142.91, 129.65, 121.06, 120.0⁴, 117.39, 111.03, 99.96, 76.53, 61.29, 60.84, 54.51, 43.92, 43.16, 40.00, 24.38, 17.24, 13.49. MS HRMS (ESI) calc. for [C₂₁H₂₇O₅]⁺: 359.1850, found: 358.1853. HPLC (95:5 hexanes : isopropanol, 0.7 mL/min, λ. _{max}= 205 nm). t_B 27.58 min (major), 25.31 (minor): 91% ee.

(4R,8R,Z)-diethyl-5-ethylidene-8a-methyl-2-oxohexahydro-2H-

chromene-7,7(3H)-dicarboxylate (2b). Prepared from 1b in accord with the general procedure for cyclization. Flash chromatography (1:1 hexanes : diethyl ether) provided the lactone as a clear oil. ¹**H-NMR** (600 MHz, C_6D_6): δ 5.55 (t, J = 7.0 Hz, 1H, 5.30 (td, J = 7.0, 1.2 Hz, 1H), 5.27 (d, J = 6.9 Hz, 1H), 4.04-3.93 (m, 4H), 3.38 (s, 5H), 3.23 (s, 2H), 3.14 (d, J = 2.7 Hz, 2H), 2.63 (dt, J = 16.8, 8.2 Hz, 2H), 2.10 (q, J = 7.3 Hz, 2H), 2.04 (t, J = 7.5 Hz, 2H), 1.77 (dt, J = 5.4, 2.7 Hz, 1H), 1.61 (s, 3H), 1.52 (s, 3H), 0.93 (t, J = 7.1 Hz, 6H). ¹³**C-NMR** (150 MHz, C₆D₆): δ 170.59, 169.81, 167.36, 131.57, 124.38, 82.75, 61.50, 60.91, 55.01, 48.10, 43.88, 43.61, 30.73, 21.35, 21.22, 13.61, 13.24. MS HRMS (ESI) calc. for [C₁₈H₂₇O₆]⁺: 339.1802, found: 339.1809. **HPLC** (95:5 hexanes : isopropanol, 0.4 mL/min, λ_{ax}= 205 nm). t_R 26.86 min (major), 25.46 min (minor): 92% ee.

(4R,8R,E)-diethyl-5-(iodomethylene)-8a-methyl-2-

oxohexahydro-2H-chromene-7,7(3H)-dicarboxylate (2c). Prepared from 1a in accord with the general procedure for cyclization with the following modification: Immedietly before the addition of catalyst, 2.1 equivalents of N-iodosuccinimide were added at -40°C, and this temperature was maintained for 18 hours. Purified by flash chromatography (1:1 hexanes : diethyl ether) to provide the lactone as a slightly tan oil. ¹H-NMR (400 MHz, CDCl₃): δ 5.29-5.26 (m, 1H), 4.16 (qq, J = 10.1, 7.0 Hz, 4H), 2.75 (s, 2H), 2.68 (d, J = 2.5 Hz, 2H), 2.36-2.29 (m, 4H), 1.74 (t, J = 2.5 Hz, 3H), 1.23 (d, J = 14.2 Hz, 6H). ¹³C-NMR (100 MHz, CDCl₃): δ 170.36, 170.34, 169.50, 143.95, 82.27, 78.29, 62.47, 62.04, 54.51, 47.77, 43.02, 40.54, 29.14, 21.00, 19.09, 14.21, 14.11. **MS** HRMS (EI) calc. for [C₁₇H₂₃O₆I]⁺: 473.0432, found: (R)-diethyl

473.0438. HPLC (95:5 hexanes : isopropanol, 0.4 mL/min, λ_{ax}= 225 nm). t_R 65.14 min (major),
59.83 min (minor): 96 % *ee.*

O H CO₂Et

yl)cyclopentane-1,1-dicarboxylate (3). Prepared from **1** in accord with the general procedure for cyclization, isolated by flash chromatography (2:3 diethyl ether : hexanes) as a minor product along with **2a.** Analytically pure

3-methyl-4-methylene-3-((S)-5-oxotetrahydrofuran-2-

material was obtained from the cyclization of triester **10**, providing **3** as the major isolable product along with **1** as further purified by trituration with cold pentane isolation of the supernate. ¹H-NMR (500 MHz, CDCl₃): δ 4.93 (t, J = 2.0 Hz, 1H), 4.73 (dd, J = 2.6, 1.6 Hz, 1H), 4.03-3.92 (m, 4H), 3.73 (t, J = 7.9 Hz, 1H), 3.21 (t, J = 2.6 Hz, 1H), 3.20 (d, J = 1.3 Hz, 1H), 2.59 (d, J = 14.0 Hz, 1H), 2.44 (dd, J = 14.0, 1.1 Hz, 1H), 1.90-1.84 (m, 1H), 1.72 (dt, J = 17.4, 10.3 Hz, 1H), 1.20-1.14 (m, 3H), 0.94-0.89 (m, 11H). ¹³C-NMR (125 MHz, CDCl₃): δ 175.73, 172.20, 171.84, 154.60, 108.52, 85.63, 62.19, 61.99, 58.57, 48.37, 43.38, 42.76, 29.33, 24.33, 23.52, 14.45, 14.45. MS HRMS (ESI) calc. for [C₁₇H₂₄O₆Na]⁺: 347.1465, found: 347.1463.

(4R,8R)-diethyl-8a-methyl-5-methylene-1-tosyloctahydroquinoline-

7,7(1H)-dicarboxylate (5). Prepared from 4 in accord with the general

EtO₂C

procedure for cyclization. Purified by flash chromatography (1:1 hexanes : diethyl ether), providing the title compound as a clear oil. ¹H-NMR (500 MHz, C_6D_6): δ 7.87 (d, J = 8.3 Hz, 2H), 6.84 (d, J = 7.9 Hz, 2H), 5.13 (d, J = 1.3 Hz, 1H), 4.59 (d, J = 1.5 Hz, 1H), 4.06 (dt, J = 13.1, 3.5 Hz, 1H), 4.03-3.80 (m, 5H), 3.33 (dd, J = 13.3, 1.9 Hz, 1H), 2.90 (td, J = 12.5, 3.6 Hz, 1H), 2.71 (d, J = 14.0 Hz, 1H), 2.13 (d, J = 13.4 Hz, 1H), 1.87-1.84 (m, 4H), 1.37-1.25 (m, 2H), 1.20-1.16 (m, 1H), 1.07 (q, J = 6.0 Hz, 4H), 0.95 (t, J = 7.1 Hz, 3H), 0.84 (t, J = 7.1 Hz, 3 H). ¹³C-NMR (100 MHz, C_6D_6): δ 178.83, 171.49, 171.21, 143.69, 143.12, 140.47, 129.80, 127.40, 112.64, 63.64, 62.11, 61.63, 55.14, 50.42, 43.66, 41.98, 40.27, 25.76, 22.52, 21.86, 14.67, 14.31, 14.22. MS HRMS (ESI) calc. for $[C_{24}H_{34}NO_6S]^+$: 464.2101, found:

464.2105. **HPLC** (95:5 hexanes : isopropanol, 1 mL/min, λ_{max} = 206 nm). t_R min 20.26 (major), 15.71 min (minor): 90% ee.

EtO₂C EtO₂C (4R,9R)-diethyl 4-methyl-1-methylene-4,4,9,9-tetrahydro-1H-xanthene-3,3(2*H*)-dicarboxylate (7a). Prepared from 6a in accord with the general procedure for cyclization. Purified by flash chromatography (4:1 hexanes : diethyl ether), providing the title compound as a clear oil. ¹H NMR δ (600 MHz, C₆H₆): δ 7.09-7.02 (m, 2H), 6.97 (d, J = 7.6 Hz, 1H), 6.86 (td, J = 6.9, 2.6 Hz, 1H), 5.16 (d, J = 1.0 Hz, 1H), 4.73 (d, J = 1.1 Hz, 1H), 3.98-3.82 (m, 4H), 3.38 (dd, J = 13.5, 2.2 Hz, 1H), 3.16 (dd, J = 13.6, 2.1 Hz, 1H), 2.74 (d, J = 13.7 Hz, 1H), 2.58 (dd, J = 16.0, 12.8 Hz, 1H), 2.36 (dd, J = 16.1, 4.6 Hz, 1H), 2.23 (d, J = 13.5 Hz, 1H), 2.09-2.06 (m, 1H), 1.04 (s, 3H), 0.86 (t, J = 8.0 Hz, 6H). ¹³C-NMR (150 MHz, CDCl₃): δ 170.67, 169.91, 152.81, 142.91, 129.65, 121.06, 120.04, 117.39, 111.03, 99.96, 76.53, 61.29, 60.84, 54.51, 43.92, 43.16, 40.00, 24.38, 17.24, 13.53, 13.49. MS HRMS (ESI) calc. for [C0H0C0]+ : 0, found: 0. HPLC Chiralpak AD-H column (98:2 hexanes : ethanol, 0.5 mL/min) t_R 19.84 min (major), 14.95 min (minor): 92% *ee*.

(4R,9R)-diethyl 7- methoxy-4-methyl-1methylene-4,4,9,9-tetrahydro-1H-xanthene-3,3(2H)-

dicarboxylate (7b). Prepared from **6b** in accord with the general procedure for cyclization. (4:1 hexanes : diethyl ether), providing the title compound as a clear oil. ¹**H-NMR** (400 MHz, CDCl): δ 6.75-6.69 (m, 2H), 6.65 (d, J = 2.4 Hz, 1H), 5.16 (s, 1H), 4.91 (s, 1H), 4.26-4.10 (m, 4H), 3.75 (s, 3H), 3.20 (dd, J = 13.7, 2.1 Hz, 1H), 2.81-2.73 (m, 2H), 2.65 (dd, J = 16.3, 4.8 Hz, 1H), 2.45 (d, J = 13.7 Hz, 1H), 2.38 (dd, J = 12.1, 4.5 Hz, 1H), 2.32 (d, J = 13.7 Hz, 1H), 1.26 (td, J = 7.1, 3.4 Hz, 7H), 0.92 (s, 3H). ¹³**C-NMR** (100 MHz, CDCl₃): δ 171.05, 170.56, As153.15, 146.31, 142.73, 121.66, 117.73, 114.09, 113.68, 111.48, 76.38, 61.90, 61.40, 55.67, 54.53, 44.13, 42.75, 40.00, 24.80, 17.06, 14.01, 13.92. **MS** HRMS (ESI) calc. for [C₂₂H₂₈O₆Na]⁺: 411.1778, found: 411.1782.

HPLC (98:2 hexanes : ethanol, 0.5 mL/min, λ_{max} = 226) t_r 18.62 min (major), 16.40 min (minor): 93% ee

(4R,9R,Z)-diethyl 1-ethylidene-4-methyl-4,4,9,9-tetrahydro-1H-

xanthene-3,3(2H)-dicarboxylate (7c). Prepared from 6c in accord with the general procedure for cyclization. Purified by flash chromatography (4:1 hexanes : diethyl ether), providing the title compound as a clear oil. ¹**H-NMR** (600 MHz, C_6D_6) δ 7.06 (dt, J = 18.8, 8.8 Hz, 2H), 6.95 (d, J = 7.5 Hz, 1H), 6.85 (t, J = 7.3 Hz, 1H), 5.69 (q, J = 7.4 Hz, 1H), 4.00 (dq, J = 10.8, 7.1 Hz, 1H), 3.94-3.84 (m, 3H), 3.19 (ddd, J = 13.3, 8.1, 1.7 Hz, 2H), 3.14 (d, J = 14.5 Hz, 1H), 2.76-2.71 (m, 2H), 2.36 (t, J = 13.4 Hz, 2H), 1.57 (d, J = 7.4 Hz, 3H), 1.21 (s, 3H), 0.87 (dt, J = 17.9, 7.1 Hz, 6H). ¹³**C-NMR** (100 MHz, CDCl₃): δ 170.91, 170.06, 152.69, 132.02, 129.58, 124.32, 121.24, 119.84, 117.30, 77.29, 65.61, 61.31, 60.77, 55.05, 45.95, 43.80, 27.19, 18.80, 15.29, 13.62, 13.61. **MS** HRMS (EI) calc. for [C₂₂H₂₈O₅Na]⁺: 395.1829, found: 395.1826. **HPLC** (99:1 hexanes : ethanol, 0.3 mL/min, λ_{ax}= 274 nm). t_R 25.82 min (major), 30.62 min (minor): 93% ee

(4R,10R)-diethyl-5,7-dimethoxy-4-methyl-1-methylene-1,2,4,4,10,10-hexahydrophenanthrene-3,3(9*H*)-dicarboxylate (9).

Prepared from 8 in accord with the general procedure for cyclization. Purified by flash chromatography (4:1 hexanes : diethyl ether), providing the title compound as a clear oil. ¹**H-NMR** (600 MHz, C_6D_6): δ 6.32 (d, J = 2.4 Hz, 1H), 6.24 (d, J = 2.4 Hz, 1H), 5.33 (d, J= 1.1 Hz, 1H), 4.41 (dd, J = 14.1, 1.9 Hz, 1H), 4.16-4.08 (m, 2H), 3.94-3.83 (m, 2H), 3.61 (dd, J = 13.3, 1.9 Hz, 1H), 3.42 (s, 3H), 3.28 (s, 3H), 2.78-2.72 (m, 1H), 2.62 (dt, J = 16.9, 3.3 Hz, 1H), 2.45 (dd, J = 37.6, 13.8 Hz, 2H), 2.23 (t, J = 7.1 Hz, 1H), 1.65-1.61 (m, 2H), 1.34 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H), 0.86 (t, J = 7.1 Hz, 3H). ¹³**C-NMR** (100 MHz, CDCl₃): δ 172.28, 172.14, 159.58, 158.08, 145.47, 137.99, 126.70, 109.94, 104.80, 97.27, 61.31, 60.86, 55.11, 54.99, 54.93, 50.44,

40.36, 39.70, 39.07, 31.89, 20.63, 17.72, 13.86, 13.84. **MS** HRMS (ESI) calc. for $[C_{24}H_{32}O_6Na]^+$: 439.2091, found: 439.2091. **HPLC** (99:1 hexanes : ethanol, 0.85 mL/min, λ_{max} = 208 nm). t_R 19.216 min (major), 22.57 min (minor): 94% *ee*

diethyl 4-(3-tert-butoxy-3-oxopropyl)-3-methylcyclohepta-3,5-diene-1,1-dicarboxylate (11). Prepared from 10 in accord with the general procedure for cyclization. Purified by flash chromatography (5:1 hexanes : diethyl ether). ¹H NMR (400 MHz, CDCl₃): δ 6.27 (d, J = 15.6 Hz, 1H),

5.46 (dt, J = 15.0, 7.3 Hz, 1H), 3.97 (sextet, J = 6.4 Hz, 4H), 3.43 (s, 2H), 3.22 (s, 2H), 2.33 (q, J = 7.1 Hz, 2H), 2.17 (d, J = 7.4 Hz, 2H), 1.50 (s, 3H), 1.37 (d, J = 0.8 Hz, 9H), 0.91 (t, J = 7.1 Hz, 6H). **13C-NMR** (150 MHz, C_6D_6): δ 185.92, 172.11, 171.85, 132.70, 131.19, 129.19, 125.06, 79.65, 79.65, 61.37, 57.65, 46.78, 41.76, 35.53, 29.04, 28.17, 14.04, 13.33. **MS** HRMS (ESI) calc. for $[C_{21}H_{32}O_6Na]^+$: 403.2091, found: 403.2095.

(4R,6S,12S,12R)-diethyl-6,12b-dimethyl-4-methylene-

3.4.4.5.6.6.12.12a-octahydro-1*H*-benzo[*a*]xanthene-2.2(12b*H*)-

EtO₂C H

dicarboxylate (13). Prepared from **12** in accord with the general procedure for cyclization. Purified by flash chromatography (4:1 hexanes : diethyl ether), providing the title compound as a clear oil. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (t, *J* = 6.2 Hz, 2H), 6.86 (td, *J* = 7.5, 1.0 Hz, 1H), 6.81 (d, *J* = 8.2 Hz, 1H), 5.31 (t, *J* = 7.3 Hz, 2H), 5.24 (s, 1H), 4.19 (qq, *J* = 10.9, 7.2 Hz, 4H), 3.37 (d, *J* = 7.1 Hz, 1H), 2.79-2.77 (m, 4H), 2.16-2.06 (m, 4H), 1.99 (t, *J* = 2.7 Hz, 1H), 1.76 (s, 3H), 1.53 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 6H). ¹³C-NMR (151 MHz, C₆D₆): δ 171.52, 171.00, 153.62, 144.90, 129.78, 127.94, 121.98, 119.72, 117.16, 109.54, 76.02, 61.16, 60.81, 54.65, 51.05, 49.87, 43.10, 40.41, 39.31, 38.26, 29.82, 22.98, 21.44, 20.71, 13.60, 13.03. **MS** HRMS (ESI) calc. for [C₂₆H₃₄O₅Na]⁺: 449.2298, found: 449.2300. **HPLC** (98:2:

hexanes:isopropanol, 0.6 mL/min, λ_{ax} = 205 nm). t_{Rs} 11.37 min (major), 16.88 min (minor). 88 % ee.

(4*R*,4*S*,10*S*,12*R*)-diethyl-7,9-dimethoxy-4,10b-dimethyl-1methylene-1,2,4,4,5,6,10b,11,12,12a-decahydrochrysene-

3,3(4H)-dicarboxylate (15). Prepared from 14 in accord with the

[] H general procedure for cyclization. Purified by flash chromatography (5:1 hexanes : diethyl ether) to give a clear oil which solidified on standing. A solution of this material crystallized on slow evaporation of a solution in 3:2 MTBE : pentanes. ¹H-NMR (600 MHz, C₆D₆): δ 6.37 (d, J = 2.0 Hz, 1H), 6.20 (d, J = 1.9 Hz, 1H), 5.25 (s, 1H), 4.84 (s, 1H), 4.12-4.01 (m, 2H), 3.98-3.87 (m, 2H), 3.55 (d, J = 13.4 Hz, 1H), 3.42 (s, 3H), 3.28 (s, 3H), 3.06 (d, J = 13.6 Hz, 1H), 2.74-2.63 (m, 2H), 2.37 (d, J = 13.4 Hz, 1H), 2.04 (d, J = 13.7 Hz, 1H), 1.84-1.78 (m, 2H), 1.73 (qd, J = 12.9, 2.6 Hz, 1H), 1.60-1.58 (m, 1H), 1.45 (s, 2H), 1.43-1.40 (m, 1H), 1.36 (t, J = 5.6 Hz, 3H), 1.01 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H), 0.86 (s, 3H).¹³C-NMR (100 MHz, C₆D₆): δ 171.99, 171.42, 159.50, 158.33, 145.87, 138.43, 130.15, 108.88, 105.02, 97.91, 61.09, 60.79, 55.11, 54.91, 54.43, 54.25, 51.68, 43.94, 40.46, 39.59, 39.51, 36.83, 33.37, 29.87, 21.37, 21.15, 18.65, 14.53, 13.65. MS HRMS (ESI) calc. for C₂₉H₄₀O₆Na: 507.2717, found: 507.2708. HPLC (99:1 hexanes : isopropanol, 0.65 mL/min, λ_{ax}= 207 nm). t_R 20.60 min (major), 42.16 min (minor). 96% *ee*.

EtO₂C EtO₂C (E)-7,7-bis(ethoxycarbonyl)-5-methyldec-4-en-9-ynoic acid (1a). ¹H NMR (400 MHz, CDCl₃): δ 1.24 (t, J = 7.2 Hz, 6H), 1.55–1.57 (m, 3H), 2.00–2.02 (m, 1H), 2.26–2.34 (m, 2H), 2.35–2.41 (m, 2H), 2.75 (d, J = 2.7 Hz, 2H), 2.79 (s, 2H), 4.11–4.25 (m, 4H), 5.29–5.34 (m, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 179.0, 170.2, 131.2, 128.5, 79.3, 71.6, 61.6, 56.5, 41.2, 33.7, 23.3, 22.4, 16.8, 14.0. MS HRMS (ESI) calc. for [C₁₇H₂₄O₆Na]⁺: 347.1465, found: 347.1467. EtO₂C EtO₂C (E)-7,7-bis(ethoxycarbonyl)-5-methylundec-4-en-9-ynoic acid (1b). ¹H NMR (400 MHz, CDCl₃): δ 1.23 (t, J = 7.1 Hz, 6H), 1.56 (s, 3H), 1.74 (t, J = 2.6 Hz, 3H), 2.25–2.34 (m, 2H), 2.34–2.40 (m, 2H), 2.69 (q, J = 2.4 Hz, 2H), 2.76 (s, 2H), 4.10–4.23 (m, 4H), 5.28 (t, J = 6.5 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 3.4, 14.0, 16.9, 22.8, 23.3, 33.8, 41.1, 57.0, 61.4, 73.8, 79.0, 128.1, 131.5, 170.5, 179.2. MS HRMS (ESI) calc. for [C₁₈H₂₆O₆Na]⁺: 361.1622, found: 361.1624.

(*E*)-diethyl 2-(2-methyl-6-(4-methylphenylsulfonamido)hex-2enyl)-2-(prop-2-ynyl)malonate (4). 1H-NMR (400 MHz, CDCl3): δ 7.77-7.75 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.23 (t, *J* = 7.1 Hz, 1H),

4.40 (td, J = 6.2, 0.3 Hz, 1H), 4.26-4.12 (m, 4H), 2.93 (d, J = 6.7 Hz, 2H), 2.77 (s, 2H), 2.72 (d, J = 2.7 Hz, 2H), 2.44 (s, 3H), 2.02-1.97 (m, 3H), 1.53-1.50 (m, 5H), 1.26 (t, J = 7.1 Hz, 6H). ¹³**C**-**NMR** (100 MHz, CDCl₃): δ 170.18, 143.36, 142.23, 136.90, 130.63, 129.69, 129.33, 127.08, 79.33, 71.65, 61.59, 56.54, 42.77, 41.18, 29.39, 25.07, 22.47, 21.51, 16.86, 14.00. **MS** HRMS (ESI) calc. for [C₂₄H₃₄NO₆S]⁺: 464.2101, found: 464.2103.

(*E*)-diethyl 2-(4-(2-hydroxyphenyl)-2-methylbut-2-enyl)-2-(prop-2ynyl)malonate (6a). ¹H-NMR (400 MHz, CDCl₃): δ 6.73 (d, J = 8.5 Hz, 1H), 6.65 (td, J = 8.5, 3.0 Hz, 2H), 5.48 (t, J = 7.0 Hz, 1H), 3.76 (s, 3H),

3.31 (d, J = 7.2 Hz, 2H), 2.87 (s, 2H), 2.81 (d, J = 2.6 Hz, 2H), 2.02 (t, J = 2.6 Hz, 1H), 1.70 (s, 3H), 1.23 (t, J = 7.1 Hz, 6H). ¹³**C-NMR** (100 MHz, CDCl₃): δ 170.20, 153.84, 131.73, 129.86, 128.21, 127.41, 126.73, 120.86, 115.65, 79.29, 71.75, 61.64, 56.84, 41.32, 29.29, 22.78, 17.16, 13.95. **MS** HRMS (ESI) calc. for $[C_{21}H_{26}O_5Na]^+$: 381.1672, found: 381.1676.

(E)-diethyl 2-(4-(2-hydroxy-5-methoxyphenyl)-2-methylbut-2enyl)-2-(prop-2-ynyl)malonate (6b). ¹H-NMR (400 MHz, CDCl₃): δ OH 7.02 (d, J = 8.7 Hz, 1H), 6.68 (dt, J = 12.5, 4.1 Hz, 2H), 5.51 (td, J =7.3, 1.2 Hz, 1H), 5.16 (s, 2H), 4.17 (gq, J = 11.3, 7.1 Hz, 4H), 3.76 (s, 3H), 3.70 (s, 2H), 3.32 (d, J = 7.3 Hz, 2H), 2.85 (s, 2H), 2.82 (d, J = 2.7 Hz, 2H), 2.00 (t, J = 2.7 Hz, 1H), 1.65 (t, J = 0.5 Hz, 3H), 1.23 (td, J = 7.1, 1.1 Hz, 10H). ¹³**C-NMR** (100 MHz, CDCl₃): δ 170.28, 154.48, 149.34, 131.38, 130.60, 128.83, 115.59, 115.18, 111.56, 94.11, 79.49, 71.70, 64.13, 61.61, 56.73, 55.67, 41.42, 28.83, 22.66, 17.01, 15.19, 14.04. **MS** HRMS (ESI) calc. for [C₂₂H₂₈O₆Na]⁺: 411.1778, found: 411.1774

2H), 2.87 (s, 2H), 2.81 (d, J = 2.6 Hz, 2H), 2.02 (t, J = 2.6 Hz, 1H), 1.70 (s, 3H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C-NMR (10\1 MHz, CDCl₃): δ 170.20, 153.84, 131.73, 129.86, 128.21, 127.41, 126.73, 120.86, 115.65, 79.29, 71.75, 61.64, 56.84, 41.32, 29.29, 22.78, 17.16, 13.95. MS HRMS (EI) calc. for $[C_{22}H_{28}O_5Na]^+$: 395.1829, found: 395.1831.

(E)-1-tert-butyl 6,6-diethyl 4-methylnon-3-en-8-yne-1,6,6-EtO₂C EtO₂C O^tBu **tricarboxylate (10).** ¹**H-NMR** (400 MHz, CDCl₃): δ 5.30 (t, J = 6.4 Hz, 1H), 4.18 (qq, J = 10.5, 7.1 Hz, 5H), 2.77 (d, J = 4.4 Hz, 2H), 2.29-2.20 (m, 4H), 2.00 (d, J = 2.6 Hz, 1H), 1.43 (s, 9H), 1.24 (t, J = 7.1 Hz, 6H). ¹³**C-NMR** (100 MHz, CDCl₃): δ 172.47, 170.18, 130.47, 129.18, 80.13, 79.40, 71.57, 61.54, 56.50, 41.21, 35.27, 28.06, 23.76, 22.41, 16.80, 13.99.**MS** HRMS (ESI) calc. for $[C_{21}H_{32}O_6Na]^+$: 403.2091, found: 403.2089.

diethyl 2-((2*E*,6*E*)-8-(2-hydroxyphenyl)-2,6-dimethylocta-2,6-dienyl)-2-(prop-2-ynyl)malonate (12). ¹H-NMR (600 MHz, C_6D_6):6.37 (d, J = 2.0 Hz, 1H), 6.20 (d, J = 1.9 Hz, 1H), 5.25 (s,

1H), 4.84 (s, 1H), 4.12-4.01 (m, 2H), 3.98-3.87 (m, 2H), 3.55 (d, J = 13.4 Hz, 1H), 3.42 (s, 3H), 3.28 (s, 3H), 3.06 (d, J = 13.6 Hz, 1H), 2.74-2.63 (m, 2H), 2.37 (d, J = 13.4 Hz, 1H), 2.04 (d, J = 13.7 Hz, 1H), 1.84-1.78 (m, 2H), 1.73 (qd, J = 12.9, 2.6 Hz, 1H), 1.60-1.58 (m, 1H), 1.45 (s, 2H), 1.43-1.40 (m, 1H), 1.36 (t, J = 5.6 Hz, 3H), 1.01 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H), 0.86 (s, 3H).¹³**C-NMR** (100 MHz, C_6D_6): δ 171.99, 171.42, 159.50, 158.33, 145.87, 138.43, 130.15, 108.88, 105.02, 97.91, 61.09, 60.79, 55.11, 54.91, 54.43, 54.25, 51.68, 43.94, 40.46, 39.59, 39.51, 36.83, 33.37, 29.87, 21.37, 21.15, 18.65, 14.53, 13.65. **MS** HRMS (ESI) calc. for $[C_{29}H_{40}O_6Na]^+$: 507.2717, found: 507.2708.

diethyl 2-((2*E*,6*E*)-9-(3,5-dimethoxyphenyl)-2,6dimethylnona-2,6-dienyl)-2-(prop-2-ynyl)malonate (14). ¹H-NMR (600 MHz, C_6D_6): δ 6.53 (d, J = 2.3 Hz,

2H), 6.49 (t, J = 2.2 Hz, 1H), 5.56-5.54 (m, 1H), 5.30 (t, J = 7.1 Hz, 1H), 4.04-3.93 (m, 4H), 3.39 (d, J = 1.8 Hz, 1H), 3.23 (d, J = 2.7 Hz, 2H), 3.14 (d, J = 2.7 Hz, 2H), 2.64 (t, J = 7.8 Hz, 2H), 2.39 (q, J = 7.5 Hz, 2H), 2.10 (t, J = 7.3 Hz, 2H), 2.05-2.02 (m, 2H), 1.77 (t, J = 2.7 Hz, 1H), 1.67 (d, J = 1.3 Hz,), 1.61 (s, 3H), 1.53-1.50 (m, 3H), 0.93 (t, J = 7.1 Hz, 6H). ¹³C-NMR (100 MHz, CDCl₃): δ 171.21, 143.42, 142.82, 140.22, 129.51, 127.12, 112.34, 63.37, 61.82, 61.34, 54.87, 50.14, 43.37, 41.71, 39.99, 25, 22.24, 21.56, 14.41, 14.02, 13.93. MS HRMS (ESI) calc. for $[C_{29}H_{40}O_6Na]^+$: 507.2717, found: 507.2716.

(**R**)-**DTB**,**MeO-biphep**(**AuCl**)₂, Prepared from treatment of the commercially available ligand with AuCl, generated *in-situ* from AuCl₃ and thiodiglycol, as described recently by this group.¹ The crude product, as an oil concentrated from benzene, was recrystallized from a concentrated solution of 5% benzene in pentane, layered underneath a fivefold excess of pentane and kept at 0°C for ten days.

The crystalline material thus obtained proved suitable for x-ray analysis, crystallographic data provided. ¹H-NMR (400 MHz, CD_2CI_2): δ 7.59 (q, J = 1.8 Hz, 3H), 7.55 (dd, J = 8.2, 2.5 Hz, 2H), 7.52 (q, J = 1.7 Hz, 2H), 7.41 (dd, J = 14.1, 1.8 Hz, 4H), 7.12 (dd, J = 14.2, 1.6 Hz, 4H), 6.97 (ddd, J = 10.7, 7.8, 0.8 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 2.61 (s, 6H), 1.26 (d, J = 8.5 Hz, 73H). ¹³C-NMR (100 MHz, CD_2CI_2): δ 158.96, 158.83, 151.68, 151.19, 151.08, 130.34-130.16, 129.67, 129.50, 129.45-129.40, 129.08, 128.87, 128.80, 128.72, 128.66-128.57, 128.44, 128.29, 128.25, 128.19, 128.15, 125.74, 125.27, 113.21, 34.96, 31.05. ³¹P-NMR (162 MHz; C₆D₆): δ 24.96. MS HRMS (ESI) calc. for [C₇₀H₉₆O₂Au₂CI]⁺: 1459.5900, found: 1459.5902.

Additional Optimization Data

E = O + O + O + O + O + O + O + O + O + O			2c + c + c + c + c + c + c + c + c + c +		
entry	ligand	ee (%)	yield 2a (%)	yield 3 (%)	
1	(<i>R</i>)-DTBM-MeO-biphep	-46	81	10	
2	(R)-xyl-MeO-BIPHEP	-36	66	11	
3	(R)-xyl-BINAP	-40	71	12	
4	(R)-tol-BINAP	-23	75	10	
5	(S)-BINAP	13	81	8	
6	(R)-C ₃ -Tunephos	7	72	8	
7	(R)-SEGPHOS	-3	88	6	
8	(S)-Difluorphos	-3	80	-	
9	(R)-DTBM-SEGPHOS	-2	78	10	

Table S2: Solvent Optimization

References

[1] Kleinbeck, F.; Toste, F. D. J. Am. Chem. Soc., 2009, 131, 9178

[2] Melhado, A. D.; Luparia M.; Toste, F.D. . J. Am. Chem. Soc., 2007, 129, 12638

Gold(I)-Catalyzed Enantioselective Polycyclization Reactions

Default/Method/Sethofer/ASSAY for TsN IA9505IP with207nm clean_25min.met Default/Sequence/Sethofer/09082502_TsN_ASSAY.seq

Projects\Default\Data\Sethofer\2PCASSAY_WH990IBT_pt85-SGS4-207
Projects\Default\Method\Sethofer\ASSAY_PC_WH990IBT_30min_pr85.met

NMR spectra

S20

