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SI Text
Simulation Methods. Langevin equation.Writing the center of mass
of dendral K as R̄K ¼ ∑i∈K lir

i∕∑i∈K li and defining its director n̄K
as the director of the filament that forms its trunk, the dynamic
evolution of the system may be described by one Langevin equa-
tion for all M dendrals,
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Here, FK and TK are the total deterministic forces and torques
acting on dendral K , and fK and τK are the stochastic forces and
torques that cause diffusion. The elements of the mobility matrix
μ are determined below, and the magnitudes of fK and τK are
related to these values via the fluctuation-dissipation theorem.
Denoting VK ¼ DR̄K∕Dt and ωK ¼ Dn̄K∕Dt, we evolve the coor-
dinates using Euler integration: R̄Kðtþ dtÞ ¼ R̄K ðtÞ þ VKdt and
n̄K ðtþ dtÞ ¼ ωK × n̄KðtÞ∕jωK × n̄K ðtÞj. Having determined the
motion of the dendrals, we can compute the new positions
and orientations of the individual filaments. For each filament i ∈
K that constitutes dendral K , we update its director using
niðtþ dtÞ ¼ ωK × niðtÞ∕jωK × niðtÞj; to calculate its instantaneous
center-of-mass velocity vi, we use vi ¼ VK þ ωK × ðri − R̄K Þ, and
thereby obtain riðtþ dtÞ ¼ riðtÞ þ vidt.

Mobility matrix of a dendral. The Langevin equation, Eq. S1, that
describes the motion of the dendrals contains a block-diagonal
mobility matrix μ of the form
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where the individual entries μK are 6 × 6 matrices relating to in-
dividual dendrals. Here, we describe how to determine the ele-
ments of each matrix μK .

Consider a dendral K composed of unbranched filaments
i ∈ K . Each of these filaments has a director ni, a length li, and
a diameter b. When moving at a velocity vi, filament i experiences
a drag force

Fi
drag ¼ ðζi∥ni ⊗ ni þ ζi⊥ðI − ni ⊗ niÞÞ · vi; [S3]

where I is the identity matrix and a ⊗ b denotes the matrix with
elements aibj, i.e., the outer vector product. The product ni ⊗ ni

acts as a projection operator onto the direction of the rod, and ζi∥
and ζi⊥ are, respectively, the viscous drag coefficients for motion
parallel and perpendicular to the rod’s axis, given by the expres-
sions (S1)

ζi∥ ¼ 2πηsli
lnðli∕bÞ

; [S4]

and

ζi⊥ ¼ 4πηsli
lnðli∕bÞ

; [S5]

where ηs is the viscosity of the cytosol. Similarly, filament i experi-
ences a drag torque

Ti
drag ¼ ðζir;⊥ðI − ni ⊗ niÞ þ ζir;∥n

i ⊗ niÞ · ωK ; [S6]

due to the rotation of the dendral at angular velocity ωK , where
ζir;∥ and ζir;⊥ are, respectively, the drag coefficients for rotation of
a rod about its axis and perpendicular to its axis, given by the ex-
pressions (S1)

ζir;∥ ¼ 4πηsR2li; [S7]

and

ζir;⊥ ¼ πηsl3i
3ðlnðli∕bÞ − γÞ ; [S8]

with γ ≈ 0.8.
The total drag force Fdrag;K and the total drag torque Tdrag;K

acting on dendral K are then

Fdrag;K ¼ ∑
i∈K

Fi
drag; [S9]

and

Tdrag;K ¼ ∑
i∈K

Ti
drag þ ðri − R̄KÞ × Fi

drag; [S10]

and, by writing the velocities vi of the individual filaments in
terms of the velocity VK and angular velocity ωK of the dendral
using

vi ¼ VK þ ωK × ðri − R̄K Þ; [S11]

we obtain both the drag force and the drag torque acting on the
dendral as linear functions of VK and ωK , i.e.,

Fdrag;K
Tdrag;K

� �
¼ ΓK

VK

ωK

� �
; [S12]

with a 6 × 6 drag matrix ΓK . Aside from Brownian fluctuations,
the drag force and drag torque must balance the total contact
force FK and contact torque TK acting on the dendral. Thus re-
ferring to Eq. 1, the mobility matrix in Eq. 2 is simply the inverse
of the drag matrix,

μK ¼ Γ−1
K : [S13]

Stochastic forces and torques. The stochastic Brownian force fK
and torque τK acting on dendral K may be obtained from the drag
matrix ΓK by using the fluctuation–dissipation relations

hf K;αf K 0;βi ¼ 2kBTΓK;αβδKK 0 ; [S14]

hτK;αf K 0 ;βi ¼ 2kBTΓK;αþ3 βδKK 0 ; [S15]

and
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hτK;ατK 0 ;βi ¼ 2kBTΓK;αþ3 βþ3δKK 0 : [S16]

Here, the Greek subscripts label the element of the vector, i.e.,
the x, y, or z coordinate, and the adjustment “þ3” ensures that the
component of the matrix corresponds to the torque, rather than
the force.

Simulation Results. Lamellipod height.We found that the lamellipod
height was almost independent of the force FT applied to the top
wall of the box representing the lamellipod, provided that
FT > 10 pN. Fig. S2 shows how the height of the lamellipod
varies as a function of the external retarding force.

Retrograde flow. In Fig. S1, we plot the protrusion speed vF vs. the
retrograde flow speed vR. Note that vF decreases as vR increases,
as expected if expansion of the actin gel drives both the retro-
grade flow and the protrusion. In Fig. S7, we plot the retrograde
flow speed vR of the center of mass of F-actin within discrete
volume elements, as a function of distance from the leading edge.
When filament–filament interactions are turned off, the retro-
grade flow differs only marginally from zero and the spatial extent
of the filament network is significantly reduced compared to our
normal case where excluded volume effects are taken into
account.

Filament orientation. At the leading edge of the lamellipod, the
rate of nucleation of new branches on an existing filament is de-
pendent on the filament orientation. As a consequence, there is a
preferential orientation of filaments within a branched network.
We found that the most likely orientation of filaments was at
�ð35–40Þ° to the z direction; the probability density at these
angles was approximately twice what would be expected were fi-
laments randomly oriented. This self-organized structure of the
branched network is consistent with microscopic studies that have
revealed an apparent long-range diagonal actin meshwork (S3).
We found, however, that the global order of branched networks,
as measured by the nematic order parameter S of the filaments,
was slight: S ≈ 0.06 at low load and S ≈ 0.10 at the stall force. By
contrast, for unbranched networks, we found S ≈ 0.13 at low
loads and S ≈ 0.17 at the stall force, with a tendency for filaments
to align parallel to the leading edge; such nematic ordering
clearly compromises the ability of actin polymerization to gener-
ate motility, either by a Brownian ratchet mechanism, or by gel
expansion.

Robustness to choice of Arp2/3 activation model. In Fig. S3, we show
how the force–velocity curve depends on the precise model of
Arp2/3 activation chosen. The box model is the default model
used in our simulation, with branching occurring at rate kbr ¼
1.4 · 10−5∕ðs:u: sÞ in a box of height Δy ¼ 50 nm and width Δz ¼
10 nm at the base of the leading edge. The stepwise model
uses three ad jacent boxes o f he i gh t Δy ¼ 50 nm and
width Δz ¼ 5 nm, with the branching rate declining successively
f r o m kbr ¼ 1.5 · 10−5∕ðs:u: sÞ t o kbr ¼ 1.0 · 10−5∕ðs:u: sÞ t o
kbr ¼ 0.5 · 10−5∕ðs:u: sÞ, and with filament nucleation occurring
only in the box closest to the front. In the exponential model,
the branching rate is described by kbr ¼ k0br expð−d∕λÞ, where d
is the distance of the actin subunit (s.u.) under consideration from
t h e b a s e o f t h e l e a d i n g e d g e , λ ¼ 12 nm and k0br ¼
1.4 · 10−5∕ðs:u: sÞ. The form of the force–velocity curve is the
same for these different activation models. This robustness to
model detail is important as the precise mode of Arp2/3 activa-
tion is still a matter of some debate.

Robustness to variation of parameters. In our standard simula-
tion, there was no filament severing (ksever ¼ 0). We investi-
gated whether finite values of ksever modified the force–velocity

relation. As shown in Fig. S4, it is reassuring that for plausible
values of the severing rate, ksever ≤ 10−3∕ðs:u:sÞ, the force–
velocity relation is unchanged. Remarkably, even at an unreal-
istically high value ksever ¼ 10−4∕ðs:u:sÞ, for which the rapid
dismantling of dendrals causes the spatial extent of the lamelli-
pod to be severely diminished, the qualitative form of the force–
velocity relation is maintained.

We conducted extensive simulations to examine how variation
of the parameters governing actin kinetics affect the force–
velocity relation. As shown in Fig. S5, the qualitative form of
the force–velocity relation remained the same as individual para-
meters were varied from about a quarter to four times their de-
fault value.

Although the general characteristics of the motile behavior
were insensitive to parameter variation, the choice of kinetic
parameters did have an effect on individual quantities, such as
the protrusion speed, stall force, and lamellipod height. In Fig. S6,
we show the influence of varying the parameters on the protru-
sion speed vF of the leading edge.

SimplifiedModel of Motility Generated by a Swelling Actin Gel. Expan-
sion speed of a gel of growing dendrals. Within our model lamelli-
pod, actin filaments grow at rate k0þ and are capped at rate kcap, so
their typical length is

hli ¼ k0þlmon∕kcap: [S17]

We suppose that the filaments are randomly packed as tightly as
possible. Then the typical F-actin concentration ½F� may be esti-
mated from the theoretical expression for the packing efficiency
ϕ of randomly aligned rods, given by (S2)

ϕ ¼ hci∕α; [S18]

where α is the aspect ratio of the rods and hci is the mean number
of contacts that each rod makes with others, which has been
found to have the value hci ≈ 5.4 (S2). Taking the F-actin mono-
mer volume to be Vmon ¼ πlmonðb∕2Þ2, this gives

½F� ¼ 4hcikcap
πk0þl2monb

: [S19]

For the default parameter values used in the simulation, Eq. S19
yields ½F� ¼ 0.39 mM, in good agreement with the maximal fila-
ment density in Fig. 3.

Consider now the number of growing filaments, Nþ, in a small
volume V adjacent to the leading edge. More such filaments are
created by branching and by nucleation, but filaments also stop
growing as a consequence of capping. Thus

dNþ
dt

¼ kbrNb þ kN − kcapNþ; [S20]

whereNb is the total number of F-actin monomers to which Arp2/
3 can bind and kN is the nucleation rate at the leading edge. We
estimate Nb ¼ ½F�LxΔyΔz, where Lx is the breadth of the box re-
presenting the lamellipod. Supposing we have a quasi-steady state
so that the number of growing filaments within the volume V is
constant, i.e., dNþ∕dt ¼ 0, we have

Nþ ¼ ðkbrNb þ kNÞ∕kcap; [S21]

and the rate at which F-actin monomers are added to the gel as a
result of both growth and nucleation is then

dN
dt

¼ k0þNþ þ kN ¼ kþ0 ðkbrNb þ kNÞ
kcap

þ kN: [S22]
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This additional material will, through excluded volume interac-
tions, cause the gel to expand in the z direction at speed

vexp ¼
1

½F�LxΔy

dN
dt

; [S23]

which, together with Eq. 19 gives

vexp ¼
kbrk0þΔz

kcap
þ ðk0þ þ kcapÞρnucπl2monbk0þ

4hcik2cap
; [S24]

where ρnuc ¼ kN∕LxΔy is the nucleation density at the lead-
ing edge.

Note that the validity of the simplifications made above breaks
down when k0þ → 0, because then the filaments are too short
to pack closely. Also, the assumption of approximately constant
F-actin concentration ½F� within the volume V is invalid when
kcap → 0, because then the filaments grow for a long duration,
leading to a strong spatial variation of filament length and, con-
sequently, packing density.

Reaction force of adhesions due to retrograde flow.The expansion of
the portion of the network adjacent to the leading edge at speed
vexp causes forward motion of the leading edge at speed vF and
retrograde flow of the dendrals in the anterior portion of the la-
mellipod at speed vR. Some of the dendrals in this rear section are
adhered to the substrate and the elastic adhesions become in-
creasingly strained as the network is propelled backward, until
eventually they detach. As a result, the substrate exerts an adhe-
sive stress on the network, which balances any external load Fext
that might oppose the motion of the leading edge.

To determine the adhesive stress, we first calculate the prob-
ability pðtÞ that an adhesion which was formed at time t0 is still
attached at time t0 þ t. We have

dp
dt

¼ −koffp: [S25]

where the strain-dependent detachment rate koff is given by
Eq. S2, reproduced here as follows:

koff ¼ k0off exp
�
κajxj
kBT

�
; [S26]

where x is the vector linking the two ends of the spring describing

the adhesion. Owing to the retrograde flow, jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Rt

2 þ y20

q
,

where y0 is some average initial strain. Thus

pðtÞ ¼ exp
�
−
Z

t

0

k0off exp
�κa ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2Rξ
2 þ y20

q
kBT

�
dξ
�
: [S27]

The mean lifetime t̄ of an adhesion is then

t̄ ¼
Z

tdp; [S28]

and the mean reactive force exerted by a single adhesion is

F̄adh ¼
1

2
κvRt̄: [S29]

For the case y0 ¼ 0, this expression may be calculated analytically,
giving

F̄adh ¼ kBT
a

eγΓð0; γÞ; [S30]

with

γ ¼ kBTk0off
κavR

[S31]

and

Γðα; βÞ ¼
Z

∞

β
tα−1e−tdt [S32]

being the upper incomplete gamma function; but to provide a
better match to our simulation we evaluate the expression nu-
merically for the case y0 ¼ Δadh∕2.

The above analysis indicates that at low retrograde flow
speeds, each adhesion generates an effective drag of constant,
high value—the so-called “protein friction” (S4). Consequently,
the average reactive force due to an adhesion increases steeply
and linearly as the flow speed increases. At high retrograde flow
speeds, on the other hand, each adhesion typically gets forcibly
detached once it has been stretched through a characteristic dis-
tance. Consequently, the average reactive force that it generates
tends toward a constant value, independent of the retrograde
flow speed.

In the simulation, we observed that the total number of adhe-
sions, Nadh, remained approximately constant, independent of
the load Fext applied to the leading edge. With this assumption,
we have for the balance of forces

Fext ¼ NadhF̄adh: [S33]

Eqs. 29 and 33 together give Fext as a function of vR. A knowl-
edge of the relation between the protrusion speed vF and the
speed of retrograde flow vR then gives vF as a function of Fext,
i.e., the force–velocity relation. In Fig. S8, we plot the force–
velocity relation using the dependence of vF on vR observed in
Fig. S1. For comparison, we also show the case vexp ¼ vF þ vR
(which holds at low forces), with vexp extrapolated from Fig. S1
for vR ¼ 0.

Values of parameters describing adhesions The values of the para-
meters characterizing the adhesions were chosen to match experi-
mental observations, where possible. Thus the value for k0off was
chosen so that the typical lifetime of an adhesion, from Eq. 28, is
0.5 s (S5) when the retrograde flow speed is vR ¼ 1 μm∕min. The
value for kon was determined by adjusting its value so that the
stress profiles obtained in the simulation match those measured
experimentally (S6). The length scale a was chosen to be the size
of a typical protein domain and we checked that the results did
not depend critically on the precise value.
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Fig. S1. Protrusion speed vF as a function of the retrograde flow speed vR for both branched (○) and unbranched rods (⦁).
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Fig. S2. Height yT of the lamellipod as a function of the external retarding force, for branched rods.
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Fig. S3. Force–velocity relation for different Arp2/3 activation models.
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Fig. S4. Force–velocity relation for different severing rates ksever.

Fig. S5. Force–velocity relation for different values of the simulation parameters: variation of (A) capping rate kcap, (B) branching rate kbr, (C) growth rate k0þ,
and (D) attachment formation rate kon.
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Fig. S6. Parameter dependence of the protrusion speed vF for two different retarding forces Fext per unit lamellipodial width (black open data,
Fext ¼ 1 nN∕μm; red open data, Fext ¼ 14 nN∕μm, which corresponds to the stall force for the default set of parameter values). Filled circles correspond
to the default value of the varied parameter. Variation of (A) capping rate, (B) branching rate, (C) polymerization rate, and (D) rate of forming adhesions.
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Fig. S7. Retrograde flow profiles for both interacting (black data) and noninteracting dendrals (red data).
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Fig. S8. Force–velocity relation according to the simplified analytical model. Data points (⦁) correspond to the relation between vF and vR shown in Fig. S1,
whereas the line corresponds to vF þ vR ¼ vexp ¼ 6.5 μm min−1, which is a good approximation to the data in Fig. S1 for vF > 5 μm min−1.
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Movie S1. Dynamics of a model lamellipod powered by the polymerization of dendrals. The simulation box is viewed from above the substrate and the blue
plane indicates the position of the movable front wall that represents the leading edge.

Movie S1 (MPG)
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