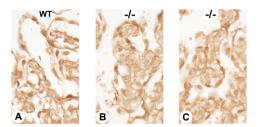
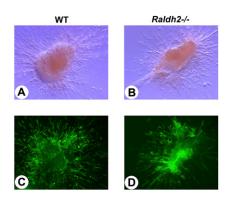
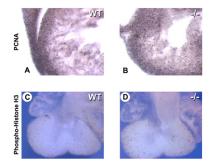
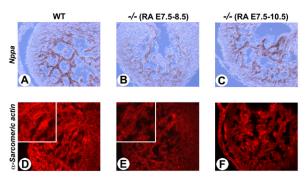

Supporting Information

Lin et al. 10.1073/pnas.0910430107

Fig. S1. Proepicardial markers are expressed in *Raldh2^{-/-}* embryos. Whole-mount in situ hybridization was performed with *Epicardin (A and B), Tbx18 (C and D), and TenC (E and F)*. All genes are expressed to similar exents in *Raldh2^{-/-}* embryos (*B, D, and F)* when compared with WT (*A, C, and E), despite the heart looping defect.* Arrowheads point to proepicardial cells colonizing the heart tube.


Fig. S2. Immunohistochemistry analysis of β -catenin in E12.5 WT (A) and Raldh2^{-/-} hearts (B and C) after short-term RA rescue that show similar patterns of nuclear localization among cells of the trabecular myocardium.

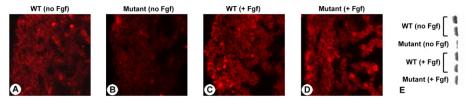

Fig. S3. Epicardial cells from $Raldh2^{-/-}$ mutants behave normally in epicardial invasion assays. Epicardial/subepicardial explants from E12.5 WT (*A* and *C*) and short-term rescued $Raldh2^{-/-}$ mutants (*B* and *D*) were cultured for 60 h on collagen gels (*Materials and Methods*). Epithelial-mesenchymal transformation was assessed as the invasion of cells into the gel (*A* and *B*) and the formation of vessel-like structures by immunostaining for smooth muscle α -actin (*C* and *D*).

Fig. 54. Proliferating cell nuclear antigen (PCNA) (*A* and *B*) and phospho-histone H3 (*C* and *D*) immunochemistry analysis on E12.5 vibratome sections and E11.5 whole hearts, respectively. *Raldh2^{-/-}* mutants (*B* and *D*) were obtained after short-term rescue (E7.5–8.5).

Fig. S5. RA deficiency impairs early differentiation of embryonic cardiomyocytes. (A-C) In situ hybridization shows decreased *Nppa* expression throughout the myocardium of short-term rescued mutants (*B*), whereas levels are almost normalized after longer-term rescue (E7.5–10.5) of the mutants (*C*). A similar observation was made by immunofluorescence analysis of α -sarcomeric actin (D-F).

Fig. S6. Exogenous Fgf improves cardiomyocytic differentiation in $Raldh2^{-/-}$ heart explants. Hearts were collected from E12.5 WT and $Raldh2^{-/-}$ embryos, cultured for 28 h in Transwell inserts in the absence (A and B) or the presence of exogenous Fgf2 (200 µg/mL), and analyzed by immunohistochemistry (A–D) or Western blot (E) for α -sarcomeric actin. Both assays show increased α -sarcomeric actin levels following Fgf2 administration.

DNA C

Assay	Antibodies	
Western blot	Anti-Fgf2 (1:200)	
	Anti-AKT (1:200)	
	Anti-phosphorylated AKT (1:1,000)	
	Anti ERK1/2 (1:200)	
	Anti-phosphorylated ERK1/2 (1:500) from Cell Signaling Technology	
	Anti-β-catenin monoclonal antibody (1:100) from BIOMOL	
	International, BA1902	
Immunohistochemistry	Anti-Fgf2 (1:200 Cell Signaling)	
	Phospho-Akt (1:100 Cell Signaling)	
	β-Catenin (1:200 Cell Signaling)	
	Sarcomeric myosin (MF-20, 1:100 DSHB, University of Iowa)	
	Cardiac troponin-T (CT-3, 1:100 DSHB, University of Iowa)	
	Cardiac α -sarcomeric actin (1:200 Sigma; A2172)	
	Smooth muscle α -actin (1:500 Sigma; A2547 clone 1A4),	
	Goat anti-mouse Ki67 (1:200 BD Sciences #556006)	
	Goat anti-mouse phospho-histone H3 (1:200 Cell Signaling)	
	Rabbit anti-mouse c-Kit (1:400 Santa Cruz Biotechnology SC-5535)	
	Alexa 488-, Alexa 594-, and Cy5-coupled secondary antibodies	
	(Molecular Probes and Jackson ImmunoResearch Laboratories)	

	Table S1.	Sources and concentrations of antibodies used for immunoreactions
--	-----------	---

Table S2. Primer sequences for real-time quantitative PCR

Gene	Forward primer (5' \rightarrow 3')	Reverse primer (5' \rightarrow 3')
Fgf2	GCGACCCACACGTCAAACTA	TCCATCTTCCTTCATAGCAAGGT
Fgf9	ATGGCTCCCTTAGGTGAAGTT	TCATTTAGCAACACCGGACTG
Gli1	TGTGTGAGCAAGAAGGTTGC	GACCATGCACTGTCTTCACG
Gli3	CTTTGCAAGCCAGGAGAAAC	CCCACCCGAGCTATAGTTGT
Shh	AAAGCTGACCCTTTAGCCTA	TTCGGAGTTTCTTGTGATCTTCC
Ptc1	CTCAGGCAATACGAAGCACA	GACAAGGAGCCAGAGTCCAG
Wnt9b	CTGGTGCTCACCTGAAGCAG	CCGTCTCCTTAAAGCCTCTCTG
Gapdh	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG
Sca-1	TGGATTCTCAAACAAGGAAAGTAAAGA	ACCCAGGATCTCCATACTTTCAATA
Nkx2.5	GACAAAGCCGAGACGGATGG	CTGTCGCTTGCACTTGTAGC
Gata4	TCTCACTATGGGCACAGCAG	ACAGCACTGGATGGATGGAG
Mef2C	GTCAGTTGGGAGCTTGCACTA	CGGTCTCTAGGAGGAGAAACA
c-Kit	TCATCGAGTGTGATGGGAAA	GGTGACTTGTTTCAGGCAACA
Isl1	CACTATTTGCCACCTAGCCAC	AAATACTGATTACACTCCGCAC
Nppa	ACCCCTCCGATAGATCTGC	TTCGGTACCGGAAGCTGT

PNAS PNAS