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Methods

Fig. 1 suggests a hypothetical molecular mechanism for budding yeast cell cycle,
including DNA synthesis, bud emergence, mitosis, and cell division, which are based
on previous investigations.

In this diagram, arrows represent chemical reactions, and box or circle represent
concentrations of proteins. Every reaction’s rate is determined by the concentrations
of related proteins and rate constants. Here, some important reactions rate constants
are also labeled. A system state can be specified given all current proteins and their
concentrations. Chemical reactions including synthesis, degradation, inactivation, ac-
tivation, etc, determine how the system state change with time. In this way, a set of
differential and algebraic equations could be deduced from the mechanism of Fig.1,
based on general principles of biochemical kinetics, which control evolution of system
at next moment.

Self Consistent Mean Field Approximation

For monostable state, the steady state probability obtained in the long time limit is
around one basin of attraction.

The solution of the equations[1,2,3] determines one of the fixed points and gives the
variation around the fixed point, the correspondingly obtained steady state probability
is around the fix point or basin of attraction. If the network allows multi-stability,
then at every basin of attraction there is a probability distribution centered around
it, with different variations. So, the total probability is obtained by summing up all
these probability distributions with different weights. The weighting factors(w1,w2, ...)
represent the size of the basin, which is the relative size among different basin of
attraction. For example,P(x) = w1Pa(x) + w2Pb(x) + ... andw1 + w2 + ... = 1.

For oscillation, the procedure to obtain probability distribution is different from
multi-stable basin. The mean and variances,ẋ(t) andσ(t), for oscillation are not constants
even in steady state, they are functions of time. Here we obtained steady state probability
distribution by integration of the probability in time for one period and divide for that
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period: Pss = (
∫ st+z

st Poscillation(x, t)dt)/z. Here,z is period of oscillation, andst is start
point for integration. The same is true how we obtain the steady state probability flux.

Entropy Production Rate

In an non-equilibrium open system, there are constant exchanges in energy and infor-
mation resulting dissipations. The dissipation of energy, as a global physical charac-
terization of the non-equilibrium system, is closely related to the entropy production
rate,in the steady state. The entropy formula for the system is well-known(1),

S = −kB

∫
P(x,t) ln P(x,t)dx. (1)

By differentiating the above equation, the increase of the entropy at constant tem-
peratureT can be obtained as follows:

TṠ = kB ∗ T
∫

(ln P + 1)∇ · J dx (2)

= −
∫

(kBT∇ ln P − F) · J dx −
∫

F · J dx

where−
∫

(kBT∇ ln P − F) · J dx = ep is the entropy production rate (1), and
∫

F · J
dx = hd is the mean rate of the heat dissipation. TheṠ = 0, in steady state,and the
entropy productionep is equal to the heat dissipationhd. In this paper, we computed
the heat dissipation rate and entropy production at steady state respectively and also
verified that they are the same numerically. As we can see, the entropy production rate
is the result of combined effects of landscape and flux.

Phase Coherence

The stability of the oscillation with regard to diffusion coefficientD can also be quanti-
fied by the phase coherenceξ, which is a measure of the degree of periodicity of the time
evolution for a given variable.(2, 3) The phase coherenceξ quantitatively measures the
degree of persistence of the oscillatory phase, and is defined as follows: First, the vector
N(t) = n1(t)e1 + n2(t)e2 is shown in Fig. S1(A). The unit vectors aree1 = (1, 0) and
e2 = (0, 1) , n1(t) andn2(t) are the concentration of the two kinds of protein molecules
at timet. Thenφ(t) is the phase angle betweenN(t) andN(t + τ), whereτ should be
smaller than the deterministic period and larger than the fast fluctuations. We choose
τ = 2h. φ(t) > 0 to represent that the oscillation goes on the positive orientation

(counterclockwise). The formula ofξ is: ξ =
2
∑
i
θ(φ(t))φ(t)
∑
i
|φ(t)| − 1, whereθ(φ) = 1 when

φ(t) > 0, andθ(φ) = 0 whenφ(t) 6 0, and sums are taken over every time steps for
the simulating trajectory.ξ ≈ 0 implies the system moves stochastically and has no
coherence. The oscillation is most coherent whenξ is close to 1.

In the presence of fluctuations, the more periodic the evolution is, the larger the value
of ξ is. In Fig. S1(B),ξ decreases when diffusion coefficientD increases, which shows
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that larger fluctuations tend to destroy the coherence of the oscillations and therefore
the stability of the system.

Flux Integration

The steady state flux can be obtained by taking the long time limit for multi-stable case.
For oscillation, we compute flux by integration by time with one period and then divide
that period. In equation (3),st is initial time for integration, andz is period, and the
variables for integration isx1(CycB) andx3(Cdc20).

J1(x1, x3) = (
∫ st+z

st
J1(x1, x3, t)dt)/z

J3(x1, x3) = (
∫ st+z

st
J3(x1, x3, t)dt)/z (3)

Supplementary results

Fig. S2(A)(C) show in the mono-stability regime for 8 variable model, the 2 dimen-
sion (in terms of CycB(x1) and Cdc20(x3) protein concentration) flux vector and the
negative gradient of the potential landscape vector separately with diffusion coefficient
D=0.0005, and (B)(D) are directions corresponding to these two vectors. We can see
the flux and negative gradient do not share the same direction. Negative gradient points
towards the mono-stability basin while the flux flows out of the basin.

Fig. S3(A)(C) show in the bi-stability regime for 8 variable model, the 2 dimen-
sion (in terms of CycB(x1) and Cdc20(x3) protein concentration) flux vector and the
negative gradient of the potential landscape vector separately with diffusion coefficient
D=0.0005, and (B)(D) are directions corresponding to these two vectors. We can see
again the flux and negative gradient do not share the same direction. Negative gradient
points towards the bi-stability basins while the flux spirals out of the basins.

Fig. S4(A)(C) show in the oscillation regime for 8 variable model, the 2 dimen-
sion (in terms of CycB(x1) and Cdc20(x3) protein concentration) flux vector and the
negative gradient of the potential landscape vector separately with diffusion coefficient
D=0.0005, and (B)(D) are directions corresponding to these two vectors. From the
figure, we can see that the flux vector is obvious at the oscillation path or closed ring,
and circulate along the ring. For the force from negative gradient of the potential, they
have small magnitude at closed ring, and large magnitude inside and outside the closed
ring. In the mean time, their directions are almost vertical to the direction of flux. So,
the flux flow and the negative gradient of potential, together as the driven force, form
the basic structure of oscillation network.

Fig. S5 show for 8 variable model the change of robustness of network when
perturbation level(lp) of chemical reaction rate constants is changed separately for mono-
stability, bistable state and oscillation. We can see that with perturbation level increased,
RR or barrier height characterizing stability of system, do not increase or decrease
monotonously. This observation show that the parameters we choose now are not the
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ones that make the system the most stable, and results of entropy production rate in Fig.
S5(D)(E) lead to similar conclusion.

Fig. S6 show the distributions of the period and amplitude of oscillations for
x1(CycB) for different fluctuations(SI Appendix). When the fluctuations increase, the
distribution of period and amplitude becomes more scattered, and the standard deviation
σ of period and amplitude from the mean increases, which means more possible values
of the period and amplitude of oscillations can appear. This indicates that less fluc-
tuations corresponding to more stable network make more coherent oscillations with
single period and amplitude rather than spread periods and amplitudes.

Fig. S7 show the changes of the barrier height with respect to the changes of the
rate constants related with positive feedback loop includingk152, k132, k22, k4, k123.
We can see that when these rate parameters increase, the corresponding barrier height
of the landscape increases. This means that the network become more stable, demon-
strating that positive feedback loops provide to the network system greater robustness
and reliability.

Results of 38 Variables Model

In Fig. S8, we can see the wiring diagram of one complete 38 variables model. Here the
basic principle is similar with the 8 variables model, forming bistable state or oscillation
in terms of antagonism between Cyclin/CDKs(clb2,clb5) and Enemies(Cdh1/APC,CKI).
The START transition is facilitated by SK(cln2), which inactivate Cdh1 and CKI and so
make CDKs(clb2,clb5) accumulated, and system enter into S/G2/M state. Once START
transition is finished, CDKs are able to suppress CKI by themselves, so SK(cln2) disap-
pear. The FINISH transition is facilitated by EP(exit protein,Cdc20). In S/G2/M, Cdc20
is activated by transcription factor Mcm1, which is activated by Clb2, and Cdc20/APC
activate Cdh1 and CKI by making Clbs degraded. System come in to G1 again, and
EP(Cdc20) disappear.

Fig. S9(A)(C) show in the mono-stability regime for 38 variable model, the 2
dimension (in terms of Cln2(x1) and Bud(x34) protein concentration) flux vector and the
negative gradient of the potential landscape vector separately with diffusion coefficient
D=0.0005, and (B)(D) are directions corresponding to these two vectors. We can see
again the flux and negative gradient do not share the same direction. Negative gradient
points towards the mono-stability basin while the flux flows out of the basin.

Fig. S10(A)(C) show in the bi-stability regime for 38 variable model, the 2 di-
mension (in terms of Cln2(x1) and Bud((x34) protein concentration) flux vector and the
negative gradient of the potential landscape vector separately with diffusion coefficient
D=0.0005, and (B)(D) are directions corresponding to these two vectors. We can see
again the flux and negative gradient do not share the same direction. Negative gradient
points towards the bi-stability basins while the flux spirals out of the basins.

Fig. S11(A)(C) show in the oscillation regime for 38 variable model, the 2 di-
mension (in terms of Cln2(x1) and Bud(x34) protein concentration) flux vector and the
negative gradient of the potential landscape vector separately with diffusion coefficient
D=0.0005, and (B)(D) are directions corresponding to these two vectors. From the
figure, we can see that the flux vector is obvious at the oscillation path or closed ring,
and circulate along the ring. For the force from negative gradient of the potential, they
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have small magnitude at closed ring, and large magnitude inside and outside the closed
ring. In the mean time, their directions are almost vertical to the direction of flux. So,
the flux flow and the negative gradient of potential, together as the driven force, form
the basic structure of oscillation network.

So we see very similar global structure of landscapes for budding yeast cell cycle
along cell masses with a simplified 8 variable and more sophisticate 38 variable models.

In Fig.S12 we plot the effects of diffusion coefficientD on RR for mono-stability
(Fig.S12(A)) and Barrier height for bistable state (Fig.S12(B)) and oscillation (Fig.S12(C))
for 38 variables system. Results show that RR and Barrier height characterizing robust-
ness of system decrease withD increased, and further show that fluctuations decrease
stability of system.

We can apply our approach to more detailed model for cell cycle network using 38
protein concentration variables model(4), we can also obtain the potential landscape of
this network when the cell mass is changed gradually. Fig.S13 shows the 3 dimension
(in terms of Cln2(x1) and Bud(x34) protein concentration) landscape pictures forD =
0.0005 for 38 variable model.

We can see there are some differences between Fig.S13 and Fig.2 in main text. This
is because that at slow growth rates (MDT>= 150 min, corresponding to 8 variable
network), newborn cells are smaller than the size at the G1-S transition (m=0.58).
Therefore the CDK-controlled system is attracted to the stable G1 steady state, and the
cell is waiting until it grows large enough to surpass the transition. Only then can the
cell commit to the S/G2/M sequence and the underlying landscape shifts through the
transition from bi-stability to oscillation. While at faster growth rates(MDT=90 min,
corresponding to 38 variable network), however, newborn cells are already larger than
the critical size at the G1-S transition. Therefore they do not linger in a stable G1
state to wait to grow large enough and start the next chromosome.(5) In this condition,
network directly enters into oscillation phase seen with large mass as seen in Fig.S13.
In the meantime, similar with 8 variables landscape, we can also see that from m=1.1
to m=2.5, the oscillation becomes more and more stable from a series of sequential
evolution process just like digging along a ring, two holes, three holes,..., and at last a
deep groove.

Mutants

The detailed cell cycle model with 38 variables in Fig.S8 was developed based on the
evidences from the phenotypes of many budding yeast mutants(4). These mutants have
been constructed by over expressing or deleting each genetic component singly or in
multiple combinations. We have investigated 7 mutants that have been used to test the
model. For each mutant simulation, we use the same equations and parameter values
with wild type, and only change those parameters in terms of mutants.

We also used method of the stochastic Brownian dynamics to study different mu-
tations. We gave a smaller constant, controlling the strength of stochastic fluctua-
tions. Fig.S14 show the stochastic simulation trajectories respectively for mutant1,
mutant2,mutant3,and mutant5. From the results, we can see that results from stochas-
tic simulation are close to results of deterministic results, which shows that stochastic
simulation and deterministic equations are identical at small fluctuations.
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We compared the landscape for wild type and 7 mutations. For wild type, when
m=0.5,1.0,1.5,2, we can see that landscape becomes mono-stable, bistable, and oscil-
lation separately.

For mutant1(cdc20(x20) and psd1(x31) are deleted) as shown in Fig.S15 and mutant
3(cdc20(x20) and clb5(x3) are deleted) (Fig.S17), when m=0.5, mutation makes the
system less stable(RR from 1.6 to 1.25). When m=1, network goes from bistable state
to mono-stability. When m=1.5 and 2, system goes from oscillation to mono-stability.
This is because that Cdc20 initiates the exit from mitosis, deletion of Cdc20 makes that
cells not exit from mitosis. So, the landscape keeps the mono-stable shape from m=0.5
to 2.

For mutant2(cdc20(x20),pds1(x31) and clb5(x3) are deleted) (Fig.S16), when m=2
the barrier height of oscillation decreases from 60 for wild type to 34 for mutant. This
shows that model become less stable. When m=1 the barrier height of bi-stability
decreases from 245 for wild type to 150 for mutant. When m=0.5 the robustness ratio
RR of mono-stability decreases from 1.2 for wild type to 1.0 for mutant. From the
diagram we know that Pds1 activate PPX by repressing its degradation, and PPX inhibit
Cdc14 by activating his opponent Net1. In the mean time, Cdc14 can activate Cdh1.
So, the existence of Pds1 make Cdh1 inactive. Additionally, Clb5 is also the enemy
of Cdh1. Therefore, the reason of oscillation is rescued might be that deletion of Clb5
and Pds1 together, which both are enemies of Cdh1, are strong enough to activate Cdh1
again. Cdh1 repress Clbs and make system back to G1. So the oscillation is rescued,
and system stays in identical phases with the wild type, but less stable.

For mutant5(sic1(x10),cdh1(x22),cdc6(x5)) (Fig.S18), when m=0.5, mutations make
the network more stable(RR from 1.6 to 3.4). When m=1, network goes from bistable
state to mono-stable state. When m=1.5 and 2, the network goes from oscillation to
mono-stable. This is because that sic1,cdh1 and cdc6 are all enemies of CDK, their
deletions make CDK increased and therefore, the network is arrested by telophase.
Accordingly, landscape keeps the mono-stable shape from m=0.5 to 2.

For mutant6(cln1,cln2(x1) and cln3 are deleted) (Fig. S19), when m=0.5, mutations
make system more stable(RR from 3.4 to 6.4). When m=1, the network goes from
bistable state to mono-stable state. When m=1.5 and 2, system go from oscillation to
mono-stable. This is because that cln1,cln2,cln3 phosphorylate and weaken the enemy
forces, allowing CDK activity to rise and trigger S phase(6), deletion of cln1,cln2,cln3
makes cells arrest in G1 state. Hence, landscape keeps the mono-stable shape from
m=0.5 to 2.

For mutant7(cln1,cln2(x1),cln3 and cdh1(x22) are deleted) (Fig.S20), when m=0.5,
mutations make system less stable(RR from 3.4 to 2.6). When m=1, network goes
from bistable state to mono-stable state. When m=1.5 and 2, the network goes from
oscillation to mono-stable. The same thing happens with mutant except that cdh1 is
deleted. So, network is arrested by mono-stable state for the same reason. In the mean
time, compared with mutant6, mono-stable landscape of mutant 7 steps towards the
direction of increased CDK. This is reasonable due to the fact that cdh1 deleted is the
enemy of CDK.
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Discussions

One of the advantages or novelties of this paper is not just constructing the non-
equilibrium potential landscape but finding the physical principles and critical roles
played by the duality of the potential and flux landscapes for non-equilibrium systems
including the biological systems. For real biological systems, such as the budding yeast
cell cycle network considered here, the potential landscape drives the system down to
the oscillation ring and the flux landscape drives the coherent oscillations on the ring.
Without the potential landscape, the system won’t be able to reach the oscillation orbit.
Without the flux landscape, the system won’t be able to circling around to form a coher-
ent oscillation. We absolutely need both for the coherent and stable oscillation of cell
cycle. This represents a paradigm shift from the conventional local stability analysis
to the global physical approaches with potential and flux in exploring the biological
networks.

Furthermore, we developed a self consistent mean field method which allows us to
surpass the computational bottleneck of exponential degrees of freedom (reducing it to
polynomial number degrees of freedom) and serve as a general framework to explore
the underlying potential and flux landscape in multiple dimensions for large realistic
biological systems.

Another advantage or novelty of the current approach lies in the following physical
pictures from the landscape: The physical pictures of the cell cycle in terms of the
change or evolution of the landscape is given: As the mass of the cell increases, the
physical process of the cell cycle starts with one basin first formed for G1 stability
leading to mono-stability, then another basin emerges for SG2 stability. Furthermore,
digging more basins around the ring eventually forms a close circle on the underlying
landscape, and the oscillations emerge. We can also explore the transition from one
biological phase to another. For example, for the moment (mass=0.58) of transition
from G1 to S-G2, the shape of landscape changes accordingly, the second basin of
attraction becomes deeper and more stable and G1 looses its stability, so the system
begins to enter into S-G2 phase.

It is worthwhile to point out that the origin of the non-zero flux driving the coherent
oscillation of cell cycle is the physical energy input in terms of the nutrition supply.

One other novelty of this work is to give a global physical picture, quantify the
potential topography and identify a single parameter with the barrier height of the
Mexican hat as the stability measure for coherent oscillations of cell cycle. When
the height of the Mexican hat is high, the stability and coherent oscillations can be
guaranteed. On the other hand, when the height of the Mexican hat is low, the system
will loose the stability and coherence of the oscillations will be destroyed.

Therefore, we can study how the barrier height of the Mexican hat varies with
different conditions (for network structure and environmental changes) to explore the
stability, function and robustness of the cell cycle network. The findings confirm the
expectations that fluctuations reduce the stability of the system.

More importantly, we can study how the specific network structures and wirings
influence the stability and function of the cell cycle network from landscape point of
view. The landscape topography in terms of barrier height can be used to address the
global stability and robustness issue which can not be done from other approaches (other
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approaches can only address the local stability). Through the changes of the landscape
topography (barrier height), we can explore the underlying structures of the network in
terms of which specific wirings in the network architecture will be crucial for the global
stability and function of the cell cycle process.

For example, from the sensitivity analysis of barrier height changes with respect
to different wiring strengths from underlying chemical reaction rates and mutations,
we find out the critical wiring links and mutations for the stability and robustness of
the cell cycle network, some are consistent with the existing experiments and some are
predictions for future experiments to verify. This is not only crucial for identifying
the key network structural elements for function but also important for the network
engineering and design. This is another novelty of the paper.

8 Variables and 38 Variables Equations

dm
dt

= µ ∗ (1 −m/mx)

dX1

dt
= k1 − (k21 + k22 ∗ X2 + k23 ∗ X4) ∗ X1

dX2

dt
=

(k31 + k32 ∗ X4) ∗ (1 − X2)
J3 + 1 − X2

− (k4 ∗m ∗ Cycb + k41 ∗ X7) ∗ X2

J4 + X2

dX3

dt
= k51 + k52 ∗ (m ∗ Cycb)nn

J5nn + (m ∗ Cycb)nn
− k6 ∗ X3

dX4

dt
=

k7 ∗ X5 ∗ (X3 − X4)
J7 + (X3 − X4)

− k8 ∗Mad ∗ X4

J8 + X4
− k6 ∗ X4

dX5

dt
= k9 ∗m ∗ Cycb ∗ (1 − X5) − k10 ∗ X5

dX6

dt
= k11 − (k121 + k122 ∗ X7 + k123 ∗m ∗ Cycb) ∗ X6

dX7

dt
= k131 + k132 ∗ X8 − k14 ∗ X7

dX8

dt
=

(k151 ∗m + k152 ∗ X7) ∗ (1 − X8)
J15 + 1 − X8

− (k161 + k162 ∗m ∗ Cycb) ∗ X8

J16 + X8

(4)
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BCK2 = B0 ∗MASS
CLN3 = C0 ∗Dn3 ∗MASS/(Jn3 + Dn3 ∗MASS)
SIC1T = SIC1 + C2 + C5 + SIC1P + C2P + C5P

CDC6T = CDC6 + F2 + F5 + CDC6P + F2P + F5P
RENTP = CDC14T − RENT − CDC14
NET1P = NET1T −NET1 − CDC14T + CDC14

PE = ESP1T − ESP1
Vasb f = kasb f ∗ (esb f n2 ∗ CLN2 + esb f n3 ∗ (CLN3 + BCK2) + esb f b5 ∗ CLB5)
Vdb2 = kdb21 + kdb22 ∗ CDH1 + kdb2p ∗ CDC20Vdb5 = kdb51 + kdb52 ∗ CDC20

Vkpc1 = kd1c1 + kd2c1 ∗ (ec1n3 ∗ CLN3 + ec1k2 ∗ BCK2 + ec1n2 ∗ CLN2 +

ec1b2 ∗ CLB2 + ec1b5 ∗ CLB5)/(Jd2c1 + SIC1T)
Vppc1 = kppc1 ∗ CDC14
Vkp f 6 = kd1 f 6 + kd2 f 6 ∗ (e f 6n3 ∗ CLN3 + e f 6k2 ∗ BCK2 + e f 6n2 ∗ CLN2 +

e f 6b2 ∗ CLB2 + e f 6b5 ∗ CLB5)/(Jd2 f 6 + CDC6T)
Vpp f 6 = kpp f 6 ∗ CDC14
Vaiep = kaiep ∗ CLB2
Vacdh = kacdh1 + kacdh2 ∗ CDC14
Vicdh = kicdh1 + kicdh2 ∗ (eicdhn3 ∗ CLN3 + eicdhn2 ∗ CLN2 + eicdhb5 ∗ CLB5 + eicdhb2 ∗ CLB2)

Vppnet = kppnet1 + kppnet2 ∗ PPX
Vkpnet = (kkpnet1 + kkpnet2 ∗ Cdc15) ∗MASS
Vdpds = kd1pds1 + kd2pds2 ∗ CDC20 + kd3pds2 ∗ CDH1
Vdppx = kdppx1 + kdppx2 ∗ (J20ppx + CDC20) ∗ Jpds/(Jpds + PDS1)

BB(Va,Vi, Ja, Ji) = Vi − Va + Ja ∗ Vi + Ji ∗ Va
GK(Va,Vi, Ja, Ji) = 2 ∗ Ji ∗ Va/(BB(Va,Vi, Ja, Ji) +

Sqrt(BB(Va,Vi, Ja, Ji)2 − 4 ∗ (Vi − Va) ∗ Ji ∗ Va))
SBF = GK(Vasb f , kisb f 1 + kisb f 2 ∗ CLB2, Jasb f , Jisb f );

MCM1 = GK(kamcm ∗ CLB2, kimcm, Jamcm, Jimcm) (5)
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dMASS
dt

= kg ∗MASS

dX1

dt
= (ksn21 + ksn22 ∗ SBF) ∗MASS − kdn2 ∗ CLN2

dX2

dt
= (ksb21 + ksb22 ∗MCM1) ∗MASS + (kd3c1 ∗ C2P + kd3 f 6 ∗ F2P)

+(kdib2 ∗ C2 + kdi f 2 ∗ F2) − (Vdb2 + kasb2 ∗ SIC1 + kas f 2 ∗ CDC6) ∗ CLB2
dX3

dt
= (ksb51 + ksb52 ∗ SBF) ∗MASS + (kd3c1 ∗ C5P + kd3 f 6 ∗ F5P)

+(kdib5 ∗ C5 + kdi f 5 ∗ F5) − (Vdb5 + kasb5 ∗ SIC1 + kas f 5 ∗ CDC6) ∗ CLB5
dX4

dt
= (ksc11 + ksc12 ∗ SWI5) + (Vdb2 ∗ C2 + Vdb5 ∗ C5) + (kdib2 ∗ C2 + kdib5 ∗ C5)

+Vppc1 ∗ SIC1P − (kasb2 ∗ CLB2 + kasb5 ∗ CLB5 + Vkpc1) ∗ SIC1
dX5

dt
= (ks f 61 + ks f 62 ∗ SWI5 + ks f 621 ∗ SBF) + (Vdb2 ∗ F2 + Vdb5 ∗ F5)

+(kdi f 2 ∗ F2 + kdi f 5 ∗ F5) + Vpp f 6 ∗ CDC6P − (kas f 2 ∗ CLB2 + kas f 5 ∗ CLB5 + Vkp f 6) ∗ CDC6
dX6

dt
= kasb2 ∗ CLB2 ∗ SIC1 + Vppc1 ∗ C2P − (kdib2 + Vdb2 +

Vkpc1) ∗ C2
dX7

dt
= kasb5 ∗ CLB5 ∗ SIC1 + Vppc1 ∗ C5P − (kdib5 + Vdb5 +

Vkpc1) ∗ C5
dX8

dt
= kas f 2 ∗ CLB2 ∗ CDC6 + Vpp f 6 ∗ F2P − (kdi f 2 + Vdb2 +

Vkp f 6) ∗ F2
dX9

dt
= kas f 5 ∗ CLB5 ∗ CDC6 + Vpp f 6 ∗ F5P − (kdi f 5 + Vdb5 +

Vkp f 6) ∗ F5
dX10

dt
= Vkpc1 ∗ SIC1 − (Vppc1 + kd3c1) ∗ SIC1P + Vdb2 ∗ C2P +

Vdb5 ∗ C5P
dX11

dt
= Vkpc1 ∗ C2 − (Vppc1 + kd3c1 + Vdb2) ∗ C2P

dX12

dt
= Vkpc1 ∗ C5 − (Vppc1 + kd3c1 + Vdb5) ∗ C5P

dX13

dt
= Vkp f 6 ∗ CDC6 − (Vpp f 6 + kd3 f 6) ∗ CDC6P + Vdb2 ∗ F2P +

Vdb5 ∗ F5P
dX14

dt
= Vkp f 6 ∗ F2 − (Vpp f 6 + kd3 f 6 + Vdb2) ∗ F2P

dX15

dt
= Vkp f 6 ∗ F5 − (Vpp f 6 + kd3 f 6 + Vdb5) ∗ F5P

dX16

dt
= ksswi1 + ksswi2 ∗MCM1 − kdswi ∗ SWI5T

dX17

dt
= ksswi1 + ksswi2 ∗MCM1 +

kaswi ∗ CDC14 ∗ (SWI5T − SWI5) − (kiswi ∗ CLB2 + kdswi) ∗ SWI5
dX18

dt
= Vaiep ∗ (1 − IEP)/(Jaiep + 1 − IEP) −

kiiep ∗ IEP/(Jiiep + IEP)
dX19

dt
= (ks201 + ks202 ∗MCM1) − kd20 ∗ CDC20T

dX20

dt
= (ka201 + ka202 ∗ IEP) ∗ (CDC20T − CDC20) − (Vi20 +

kd20) ∗ CDC20
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dX21

dt
= kscdh − kdcdh ∗ CDH1T

dX22

dt
= kscdh − kdcdh ∗ CDH1 + Vacdh ∗ (CDH1T − CDH1)/(Jacdh + CDH1T − CDH1) −

Vicdh ∗ CDH1/(Jicdh + CDH1)
dX23

dt
= ks14 − kd14 ∗ CDC14T

dX24

dt
= (kdirent ∗ RENT + kdirentp ∗ RENTP) − (kasrent ∗NET1 + kasrentp ∗NET1P) ∗ CDC14

+ks14 − kd14 ∗ CDC14 + kdnet ∗ (RENT + RENTP)
dX25

dt
= ksnet − kdnet ∗NET1T

dX26

dt
= kdirent ∗ RENT − kasrent ∗NET1 ∗ CDC14 + Vppnet ∗NET1P

−Vkpnet ∗NET1 + ksnet − kdnet ∗NET1 + kd14 ∗ RENT
dX27

dt
= −kdirent ∗ RENT + kasrent ∗NET1 ∗ CDC14 +

Vppnet ∗ RENTP − Vkpnet ∗ RENT − (kd14 + kdnet) ∗ RENT
dX28

dt
= lte1 ∗ (TEM1T − TEM1)/(Jatem + TEM1T − TEM1) −

BUB2 ∗ TEM1/(Jitem + TEM1)
dX29

dt
= (ka151 ∗ (TEM1T − TEM1) + ka152 ∗ TEM1 +

ka15p ∗ CDC14) ∗ (Cdc15T − Cdc15) − ki15 ∗ Cdc15
dX30

dt
= ksppx − Vdppx ∗ PPX

dX31

dt
= (kspds1 + ks1pds2 ∗ SBF + ks2pds2 ∗MCM1) +

kdiesp ∗ PE − (Vdpds + kasesp ∗ ESP1) ∗ PDS1
dX32

dt
= −kasesp ∗ PDS1 ∗ ESP1 + (kdiesp + Vdpds) ∗ PE

dX33

dt
= ksori ∗ (eorib5 ∗ CLB5 + eorib2 ∗ CLB2) − kdori ∗ORI

dX34

dt
= ksbud ∗ (ebudn2 ∗ CLN2 + ebudn3 ∗ CLN3 + ebudb5 ∗ CLB5)

−kdbud ∗ BUD
dX35

dt
= ksspn ∗ CLB2/(Jspn + CLB2) − kdspn ∗ SPN

dX36

dt
= 0

dX37

dt
= 0

dX38

dt
= 0 (6)
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Table 1: Variables of 8 variables model
Variables Proteins
X1 CycB
X2 Cdh1
X3 Cdc20T
X4 Cdc20A
X5 IEP
X6 CKI
X7 SK
X8 TF
m Cell growth

Table 2: Variables of 38 variables model
Variables Proteins Variables Proteins Variables Proteins Variables Proteins
X1 CLN2 X11 C2P X21 CDH1T X31 PDS1
X2 CLB2 X12 C5P X22 CDH1 X32 ESP1
X3 CLB5 X13 CDC6P X23 CDC14T X33 ORI
X4 SIC1 X14 F2P X24 CDC14 X34 BUD
X5 CDC6 X15 F5P X25 NET1T X35 SPN
X6 C2 X16 SWI5T X26 NET1 X36 Vi20
X7 C5 X17 SWI5 X27 RENT X37 lte1
X8 F2 X18 IEP X28 TEM1 X38 BUB2
X9 F5 X19 CDC20T X29 Cdc15 MASS Cell growth
X10 SIC1P X20 CDC20 X30 PPX
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Table 3: Parameter values of 8 variables model
Component Rate constants(min−1) Dimensionless constants
CycB k1=0.04,k21=0.04,k22=1,k23=1 [CycB]threshold = 0.1
Cdh1 k31=1,k32=10,k41=2,k4=35 J3=0.04,J4=0.04
Cdc20T k51=0.005,k52=0.2,k6=0.1 J5=0.3,n=4
Cdc20A k7=1,k8=0.5 J7=0.001,J8=0.001,[Mad]=1
IE k9=0.1,k10=0.02
CKI k11=1,k21=0.2,k122=50,k123=100 Keq=1000
SK k13=1,k14=1,k151=1.5,k152=0.05,k161=1,k162=3 J15=0.01,J16=0.01
M µ = 0.01 mx=10
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Table 4: Parameter values of 38 variables model for wild type
kg=0.007702 ksn21=0 ksn22=0.15 kdn2=0.12 ksb51=0.0008 ksb52=0.005
kdb51=0.01 kdb52=0.16 ksb21=0.001 ksb22=0.04 kdb21=0.003 kdb22=0.4
kdb2p=0.15 ksc11=0.012 ksc12=0.12 kd1c1=0.01 kd2c1=1 kd3c1=1
kppc1=4 ksf61=0.024 ksf62=0.12 ksf63=0.004 kd1f6=0.01 kd2f6=1
kd3f6=1 kppf6=4 kasb5=50 kdib5=0.06 kasf5=0.01 kdif5=0.01
kasb2=50 kdib2=0.05 kasf2=15 kdif2=0.5 ksswi1=0.005 ksswi2=0.08
kdswi=0.08 kaswi=2 kiswi=0.05 kaapc=0.1 kiapc=0.15 ks201=0.006
ks202=0.6 kd20=0.3 ka201=0.05 ka202=0.2 kscdh=0.01 kdcdh=0.01
kacdh1=0.01 kacdh2=0.8 kicdh1=0.001 kicdh=0.08 ks14=0.2 kd14=0.1
ksnet=0.084 kdnet=0.03 ka151=0.002 ka152=1 ka153=0.001 ki15=0.5
kppnet1=0.05 kppnet2=3 kkpnet1=0.01 kkpnet2=0.6 kasrent=200 kasrentp=1
kdirent=1 kdirentp=2 ksppx=0.1 kdppx1=0.17 kdppx2=2 kspds1=0
ks1pds3=0.03 ks2pds2=0.055 kd1pds1=0.01 kd2pds2=0.2 kd3pds3=0.04 kasesp=50
kdiesp=0.5 ksori=2 kdori=0.06 ksbud=0.2 kdbud=0.06 ksspn=0.1
kdspn=0.06 kasbf=0.38 kisbf1=0.6 kisbf2=8 kamcm=1 kimcm=0.15
esbfn2=2 esbfn3=10 esbfb5=2 ec1n3=0.3 ec1n2=0.06 ec1k2=0.03
ec1b5=0.1 ec1b2=0.45 ef6n3=0.3 ef6n2=0.06 ef6k2=0.03 ef6b5=0.1
ef6b2=0.55 ecdhn3=0.25 ecdhn2=0.4 ecdhb5=8 ecdhb2=1.2 eorib5=0.9
eorib2=0.45 ebudn3=0.05 ebudn2=0.25 ebudb5=1 C0=0.4 Dn3=1
B0=0.054 TEM1T=1 Cdc15T=1 Esp1T=1
Jd2c1=0.05 Jd2f6=0.05 Jaapc=0.1 Jiapc=0.1 Jacdh=0.03 Jicdh=0.03
Jatem=0.1 Jitem=0.1 Jasbf=0.01 Jisbf=0.01 Jamcm=0.1 Jimcm=0.1
Jspn=0.14 Jn3=6 J20ppx=0.15 Jpds=0.04 Kez=0.3 Kez2=0.2
kmad2=8(for [ORI]>1 and [SPN]<1) or 0.01(otherwise)
kbub2=1(for [ORI]>1 and [SPN]<1) or 0.2 (otherwise)
kltel=1(for [SPN]>1 and [Clb2]>Kez1) or 0.01 (otherwise)

Figure

Fig.S 1: (A) shows the definition of phase coherence. (B) shows coherence versus
external noise D for oscillation.
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Fig.S 2: Flux and gradient potential force for monostable. Shown are the vector graphs
of the flux (A), the force from negative gradient of the energy landscape (C), and the
direction of those forces with diffusion coefficient D = 0.0005 (B, D).
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Fig.S 3: Flux and gradient potential force for bistable. Shown are the vector graphs
of the flux (A), the force from negative gradient of the energy landscape (C), and the
direction of those forces with diffusion coefficient D = 0.0005 (B, D).
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Fig.S 13: Figures show the 3 dimension landscape picture from bistable to oscillation
for 38 variables model.
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tant3(cdc20,clb5),(D) shows the trajectory of mutant5(sic1,cdh1,cdc6)
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Fig.S 15: Mutations 1:cdc20 pds1. ks201=0,ks202=0,ks1pds2=0,ks2pds2=0
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Fig.S 16: Mutation2: cdc20,pds1,clb5. ks201=ks202=0,ksb51=ksb52=0,ks1pds2=ks2pds2=0.
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Fig.S 17: Mutation3: cdc20, clb5.ks201=0,ks202=0,ksb51=0,ksb52=0.
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Fig.S 18: Mutation5: sic1,cdh1,cdc6. ksf61=ksf62=ksf63=0,ksc11=ksc12=0,kscdh=0,initial
CDH1T=CDH1=0.
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Fig.S 19: Mutation6:cln1,cln2,cln3. ksn21=ksn22=0,Dn3=0.
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Fig.S 20: Mutation7: cln1,cln2,cln3,cdh1.ksn21=ksn22=0,Dn3=0,kscdh=0,initial
CDH1=CDH1T=0.
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