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SUPPLEMENTAL MATERIALS 
 
 
Supplemental Methods 
Considerations Relating to Allometric scaling of metabolic rate 
In traditional allometric scaling of MR (1-4), the logarithm (log) of MR is regressed on 
log(TBM), resulting in an expression of the form: predicted arithmetic mean of log(MR) = c + 
blog(TBM). Exponentiation yields a power equation of the form: predicted geometric mean of 
MR = aTBMb where a is the scaling coefficient and b is the scaling exponent. Normalizing MR 
by forming the ratio MR / [TBMb] yields the constant a such that the value of the ratio does not 
systematically vary with variation in [TBMb]. This approach, which dates back some 120 years 
to the work of Max Rubner (1), remains the subject of considerable contemporary interest and 
debate (e.g., (5) (4) (6)) and has faced interpretational difficulty concerning the "meaning" of 
TBMb.  R.E. Keesey used allometric analysis that assumed a scaling exponent of 0.75 to provide 
evidence that MR is modulated in accordance with set-point regulation of body fat stores (7). 
The 0.75 scaling exponent was popularized by Max Kleiber (2) and much later "derived" in a 
paper (5) based on disputed assumptions involving fractal geometry, energy minimization (8) (9) 
and the very notion that the empirical database supports the 0.75 value (10). However, it is now 
well established that there is no universally-applicable within- or between-species values for the 
scaling exponent, and this exponent must be identified based on ones data (3, 6). Moreover, the 
traditional approach to allometric analysis has been challenged on grounds of parameter 
estimate-biasing stemming from the least squares optimization of logarithmic MR values that fail 
to satisfy the equal variance assumption of traditional regression, and the fact that back 
transformation (exponentiation to the arithmetic scale) results in a model that estimates the 
geometric rather than the arithmetic mean of MR (11). Finally, recent work challenges the very 
notion that the relationship between TBM and MR conforms to a pure power equation (12).  
Taken together, these considerations challenge the use of normalization strategies based on 
allometric scaling when comparing MR either across species or within species, especially when 
groups being compared differ substantially in body composition (e.g., comparing lean and obese 
mice).  
 
About the Project by genotype (P x G) interaction.  Project and genotype were modeled as 
factors.  There were 4 levels of project with each level corresponding to a unique cohort of mice.  
Within each mouse cohort there were two levels of genotype, WT and mutant, and the mutants 
harbored a gene mutation that was unique to the cohort.  Accordingly, defining the P x G 
interaction resulted in 8 groups, e.g., P1 WT, P1 mutants; p2 WT, p2 mutants, and so forth. Thus, 
the regression models for energy expenditure identified a coefficient corresponding to the effect 
on EE of membership within each level of project and genotype.  Inspection of Supplemental 
Tables 1 and 2 will make this clear.  
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Supplemental Results 
 
Supplemental Table 1.  Full regression model for 24-h average energy expenditure (cal/min) for 
main regression analysis. Multiple R2 = 0.90. 

Independent variable Coefficient* SE P 
Intercept 0.156 0.694 0.822 
LBM (g) 0.269 0.0395 0.00001 
FM (g) 0.144 0.0232 0.00001 
Sex (0=female, 1=male) -0.547 0.2022 0.007 
Diet (0=chow, 1=HFD) 1.311 0.291 0.00001 
Activity (counts/min) 0.011 0.0056 0.058 
Project=1 * Genotype=Mutant   2.041 0.228 0.00001 
Project=1 * Genotype=Wildtype     1.206 0.207 0.00001 
Project=2 * Genotype= Mutant 1.809 0.2983 0.00001 
Project=2 * Genotype=Wildtype 1.877 0.2399 0.00001 
Project=3 * Genotype= Mutant 0.621 0.4892 0.204 
Project=3 * Genotype=Wildtype 1.344 0.323 0.00001 
Project=4 * Genotype= Mutant 0.974 0.2292 0.00001 
Project=4 * Genotype=Wildtype 0 (ref. group)   
 
* Estimated change in mean energy expenditure per unit change in the independent variable 
SE: standard error of the coefficient estimate 
 
 
 
Supplemental Table 2.  Full regression model for minimum light cycle energy expenditure 
(cal/min) for main regression analysis. Muliple R2 = 0.89. 

Independent variable Coefficient* SE P 
Intercept 0.653 0.568 0.251 
LBM (g) 0.144 0.0301 0.00001 
FM (g) 0.143 0.0214 0.00001 
Sex (0=female, 1=male) -0.816 0.1890 0.00002 
Diet (0=chow, 1=HFD) 1.327 0.2569 0.00001 
Project=1 * Genotype= Mutant 1.407 0.2321 0.00001 
Project=1 * Genotype=Wildtype     0.504 0.2066 0.015 
Project=2 * Genotype= Mutant 1.146 0.2582 0.00001 
Project=2 * Genotype=Wildtype 1.377 0.2134 0.00001 
Project=3 * Genotype= Mutant 0.673 0.4031 0.095 
Project=3 * Genotype=Wildtype 0.880 0.3030 0.004 
Project=4 * Genotype= Mutant 1.191 0.2001 0.00001 
Project=4 * Genotype=Wildtype 0 (ref. group)   
 
* Estimated change in mean energy expenditure per unit change in the independent variable 
SE: standard error of the coefficient estimate 
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Supplemental Discussion 
Sample size considerations in multiple regression 
Factors that may hinder widespread use of multiple regression to normalize MR in murine 
research include both the need for biostatistical expertise and the concern (13) that the sample 
size required for this type of analysis may exceed what is typically employed for such studies 
(e.g., 6-10/group).  With the caveat that investigators are well advised to obtain power and 
sample size analyses from a qualified biostatistician during study planning, we anticipate that 
minimum group sizes for identifying a reliable body size-adjusted effect of an independent 
variable on energy expenditure will be 6-10 mice/group when regression methods are employed, 
given that measurements of energy expenditure and body mass variables are of sufficient quality. 
Reliable identification of independent variables with subtle effects will require larger sample 
sizes.  The sample size can be reduced by employing a study design in which two or more 
repeated measurements of energy expenditure are obtained per animal, and using statistical 
methods accommodate longitudinal data (such as generalized estimating equations (14)).  We 
anticipate that biostatistical advice pertaining to these issues will be made available as a 
resource to investigators via the NIH-funded Mouse Metabolic Phenotyping Center program. 
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