SUPPLEMENTARY DATA

Exp. no.	Number of embryos	Embryo age (days after anthesis)	Recovered plants	Positive for transgene	Efficiency
1	255	14	2	1	0.39%
2	117	14	1	1	0.85%
3	56	14	0	-	0%
4	125	14/15	0	-	0%
5	95	15	8	6	6.31%
6	145	15/16	7	5	3.44%
7	83	16	0	-	0%
Total	876		18	13	
Mean					1.5%

TABLE S1. Transformation of wheat with TaALMT1

Shown for each of the experiments are the number of embryos bombarded, the number of recovered plants, the number of recovered plants shown to contain the transgene by PCR and the calculated efficiency of transformation.

TABLE S2. Scoring T_2 families for Al³⁺ resistance

Families of T2_1 line	1_1	1_2	1_6	1_7	1_8	1_9	1_11	1_13	1_14	1_19 (null)
No. of resistant seedlings	10	10	19	8	15	11	13	11	13	0
No. of sensitive seedlings	6	6	0	6	0	6	4	6	4	20
Total seedlings	16	16	19	14	15	17	17	17	17	20 Negative
Probably homozygous	No	No	Yes	No	Yes	No	No	No	No	control
Families of T2_2B line	2B_1	2B_2	2B_3	2B_4	2B_7	2B_8	2B_9	2B_10	2B_13	2B_19 (null)
No. of resistant seedlings	20	12	13	15	16	11	13	16	16	0
No. of sensitive seedlings	0	7	7	5	4	7	7	4	4	19
Total seedlings	20	19	20	20	20	18	20	20	20	19
Probably homozygous	Yes	No	No	No	No	No	No	No	No	Negative control
Families of T2 3 line	31	32	33	34	35	36	37	38	39	3 20 (null)
No. of resistant seedlings	17	19	19	21	18	18	16	16	14	0
No. of sensitive seedlings	4	0	2	0	2	0	4	4	6	20
Total seedlings	21	19	21	21	20	18	20	20	20	20
i otar oocaniigo	- ·	10			20	10	20	20	20	Negative
Probably homozygous	No	Yes	No	Yes	No	Yes	No	No	No	control
Families of T2 4 line	4 1	42	43	44	45	46	47	48	49	4 13 (null)
No. of resistant seedlings	14	19	16	20	15	20	10	18	15	0
No. of sensitive seedlings	7	0	8	0	6	0	11	2	2	20
Total seedlings	21	19	24	20	21	20	21	20	17	20
Probably homozygous	No	Yes	No	Yes	No	Yes	No	No	No	Negative control
Families of T2_5 line	5_1	5_2	5_3	5_4	5_5	5_6	5_7	5_8	5_9	5_15
No. of resistant seedlings	10	19	19	19	0	0	19	15	19	20
No. of sensitive seedlings	10	0	0	0	0	0	5	2	1	0
Total seedlings	20	19	19	19	0	0	24	17	20	20
Probably homozygous	No	Yes	Yes	Yes	missing	missing	No	No	No	Yes
Families of T2_8 line	8_1	8_2	8_3	8_4	8_5	8_7	8_9	8_11	8_15	8_16 (null)
No. of resistant seedlings	16	15	17	15	21	14	12	11	16	0
No. of sensitive seedlings	3	3	5	1	0	6	4	5	0	20
Total seedlings	19	18	22	16	21	20	16	16	16	20
Probably homozygous	No	No	No	No	Yes	No	No	No	Yes	Negative control
Families of T2_12 line	12_1	12_2	12_3	12_4	12_5	12_6	12_7	12_8	12_9	12_19(null)
No. of resistant seedlings	12	19	13	12	16	12	18	17	13	0
No. of sensitive seedlings	4	0	3	3	2	3	0	3	5	18
Total seedlings	16	19	16	15	18	15	18	20	18	18
Probably homozygous	No	Yes	No	No	No	No	Yes	No	No	Negative control
Families of T2_14 line	14_1	14_2	14_3	14_4	14_5	14_6	14_7	14_8	14_9	14_19(null)
No. of resistant seedlings	19	18	16	20	19	16	20	16	20	0
No. of sensitive seedlings	4	3	3	0	4	7	0	3	0	20
Total seedlings	23	21	19	20	23	23	20	19	20	20
Probably homozygous	No	No	No	Yes	No	No	Yes	No	Yes	Negative control
Families of T2_18 line	18_1	18_2	18_3	18_4	18_7	18_9	18_11	18_12	18_15	18_18(null)

No. of resistant seedlings	20	19	13	16	15	11	20	19	14	0
No. of sensitive seedlings	0	1	7	4	4	4	0	0	4	20
Total seedlings	20	20	20	20	19	15	20	19	18	20
Probably homozygous	Yes	No	No	No	No	No	Yes	Yes	No	Negative control
Families of T2_20A	20A_1	20A_2	20A_4	20A_6	20A_8	20A_9	20A_11	20A_13	20A_15	20A_18(null)
No. of resistant seedlings	20	16	19	18	20	0	17	20	0	0
No. of sensitive seedlings	0	0	0	1	0	20	0	0	19	16
Total seedlings	20	16	19	19	20	20	17	20	19	16

Ten seeds from each of nine T_1 transgenic lines were grown to yield. PCR tests had previously established that nine of these T_1 seed contained the transgene and one was a null segregant. The seed generated from each of the T_1 plants comprised a T_2 family that was either segregating for the transgene or homozygous for the transgene. Between 16 and 24 seed from each of the nine T_2 families for each transgenic line were grown in 70 mL of nutrient solution (pH 4.3) with 30 μ M AlCl₃ on a platform shaker (100 rpm). Solutions were replaced daily. Aluminum resistance of each seedling in each family was scored after 5 d by assessing root length and by examining the root apices for tissue damage under a dissecting microscope. Likely homozygous families were identified as those in which all seedlings had good root growth and undamaged root apices. FIG. S1 Relationship between *TaALMT1* expression and malate efflux in the T_1 and T_2 lines. *TaALMT1* expression was measured by qRT–PCR using the endogenous *GAPDH* gene as a reference in plants of the (A) T_1 and (B) T_2 generations. Since the data were collected over several experiments, the expression data are presented here relative to the parental line BW26 included to account for the variation between experiments. Expression data for the T_1 lines represent the mean and s.e. of biological replicates (n = 3) and for T_2 it represents the mean of technical replicates (n = 3). The Al³⁺-activated malate efflux was measured from excised root apices in the presence of 50 μ M AlCl₃. Malate efflux was only detected in the presence of Al³⁺ treatment and data show means and standard errors (n = 4). Open circles represent each of the (A) T_1 and (B) T_2 lines and the open triangle in (B) represents a null-segregant T2_1-19. Filled circles represent ET8 and closed triangles represent BW26.

FIG. S2. Southern analysis of the T_2 transgenic plants. Genomic DNA (10 µg) isolated from the T_2 lines identified as being probably homozygous for the transgene (based on an Al³⁺ resistance assay) was digested with *Bam*HI, run on an agarose gel and transferred to a membrane filter using the alkaline blotting method. The membrane was probed with a labelled PCR product targeting the maize ADH intron region of the plasmid. The column numbers show the following lines: (BW26) Bob White 26 (parent line); (1) T2_1.6; (2) T2_2B.1; (3) T2_3.4; (4) T2_4.4; (5) T2_5.4; (6) T2_8.5; (7) T2_12.7; (8) T2_18.1; (9) T2_20A.8. Size markers are included on the right-hand side and the two arrows on the left-hand side show bands cross-reacting with the control parental line BW26.

