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SUPPLEMENTARY INFORMATION 
 

Selection of clonal cell lines. Clones were made from H460 (Carney et al, 1985) and 

HBEC (Vaughan et al, 2006) cell lines (gifts of Dr. John Minna at UT Southwestern 

Medical Center). Cells were plated in serial dilution at ~0.25 cells per well in a 96-well 

plate and inspected manually to ensure growth occurred from a single site. 49 H460 and 75 

HBEC clones were randomly chosen along with the parental population for the 

experiments.  

Selection of NCI-60 cell lines (Suppl. Table 2).  The 5 most sensitive and 5 most resistant 

cell lines to paclitaxel within the NCI-60 panel were selected using the latest (August 2008) 

publicly available GI50 values  (downloaded October 6, 2008 from the NCI depository 

website (NCI/NIH); values based on the highest repeat numbers were used (in our case 

29)). The leukemia cell lines were excluded from the initial selection process as they were 

mostly non-adherent and thus unsuitable for our imaging assays. The identities of all 

selected cell lines were checked by DNA fingerprinting using Powerplex sequencing 

(performed at the UT Southwestern Medical Center Core Facilities). The CAKI-1 cell line 

was discarded since its identity could not be confirmed by fingerprinting, leaving 9 final 

NCI cell lines for our study.  

Cell culture and drug sensitivity assay. Cell lines were grown in RPMI 1640 medium 

supplemented with either 10% (H460 and HBEC clones) or 5% (NCI-60 cell lines) fetal 

bovine serum (FBS), 2mM L-glutamine and 1x penicillin-streptomycin in a 37°C / 5% CO2 

incubator. Cells were plated at a density of 10,000 cells per well on Nunc 96-well glass-

bottomed  imaging plates in triplicate wells, and  incubated overnight (16 hours) to allow 

cells to adhere (Suppl. Table 3). For the drug-sensitivity assays, cells were treated with 

paclitaxel (10nM) or doxorubicin (1μM) for 48 hours. Cells were fixed with 4% 

paraformaldehyde (PFA) in PBS for 5 minutes. Each collection of H460, HBEC, or NCI 
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cell line experiments was performed on a single day to eliminate issues of day-to-day 

variability (per time point). 

Marker selection and immunostaining. Six marker sets (MS1-MS6) were selected for the 

heterogeneity assays, and one apoptosis marker set (Annexin-V, cleaved Caspase3 and 

PARP) was used for the drug assay (Suppl. Table 1). Hoechst 33342 was used in all marker 

sets to identify nuclear regions. Cells were fixed with 4% paraformaldehyde for 5 minutes, 

permeabilized with 0.2% Triton X-100 solution in TBS for three minutes, washed with 

TBST, blocked with 5% BSA solution in TBST at room temperature for two hours, and 

washed with TBST three times. 5% BSA in TBST was used for primary and secondary 

antibody dilutions. Finally, plates stained with antibodies were incubated in the dark at 

room temperature for two hours and then washed again with TBST three times. After the 

final washing step, 100μl of TBST containing 0.1% sodium azide was added to each well. 

Image acquisition and processing. All fluorescence images were acquired using a TE-

2000 E2 epifluorescence microscope (Nikon) equipped with integrated Perfect-Focus 

System (PFS), Nikon Plan Apochromat 20x objective lens and Photometrics CoolSNAP 

HQ camera using 1x1 camera binning. Image acquisition was controlled by Metamorph 

software (Universal Imaging). Image background correction was done using the National 

Institute of Health ImageJ rolling-ball background subtraction software (Rasband et al, 

1997-2009). Cellular regions were determined using a watershed-based segmentation 

algorithm (Loo et al, 2007) which first retrieves nuclear regions using DNA staining then 

combines multiple cytosolic region markers to identify cellular boundaries. Images were 

visually inspected, and images with severe focus, staining, or cell-segmentation artifacts 

were discarded. We identified ~4,000 cellular regions per marker set and clone after 

applying automated cell segmentation to our image data. 
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Image quality control. We manually inspected all fluorescence images (~69,000) and 

discarded those presenting obvious anomalies (e.g. focus issues and abnormal fluorescence 

staining). To account for systematic overlap between adjacent 4x4 images, cells situated 

within the right-hand side margin (10% of the image width) and bottom margin (10% of 

image height) of those image frames sharing common margins with neighbour frames were 

removed from our dataset. Finally, images with poorly segmented cells were re-segmented 

with manually optimized segmentation parameters. 

Measure of growth rate, total cellular count, and local cell density (Suppl. Fig. 2). The 

growth rate of a clone was computed based on the fold increase of cell density five days 

after plate seeding (no drug). Total observed cell count was computed from the total 

number of cells detected in the images after 16 hours. Local cell density of a clone, 

referring to the “clumpiness” of cells after plate seeding, was estimated for each cell by 

counting the number of neighboring cells whose geometric center is located within r pixels 

of its own center. The median number of such neighbors of all cells in the clone was taken 

as the measure of local cell density. We used r = 100 in our analysis (cell size is 60-70 

pixels long). 

Fluorescence intensity normalization across plates. To account for plate-to-plate 

fluctuation of fluorescence intensity, greyscale values of each image’s pixels were 

normalized against the parental clone within each plate. For a given plate p and 

fluorescence channel m, the distribution of median intensity per cellular region was 

collected across all replicate wells of the parental clone. The median value of this intensity 

distribution, defined as Jm
(p)

, was used to transform the pixel intensity Im
(p)

 of all images 

from channel m in plate p to a new value I’m
(p) 

by a simple rescaling operation using a fixed 

reference parameter I0: )(
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all plates. In our analysis, the parameter I0 was set to 500 (the dynamic range of pixel value 

is between 0 and 4,095). For the NCI-60 dataset, due to weaker staining of several 

fluorescence markers, we used the 75th percentile pixel intensity as Jm
(p)

 instead of the 

median value to ensure that all pixel values remained within a reasonable numerical range 

after rescaling. 

Feature reduction by PCA transformation. We applied the pixel intensity-based features 

developed in (Slack et al, 2008) to capture cellular signaling phenotypes. In our analysis, 

we used a grid with edges at 0, 1/3, 2/3, 1, 4/3, 5/3, 2, 7/3, 8/3 and ∞ (infinity) to discretize 

the intensity ratios for each pixel. We simplified the feature computation by keeping only 

one copy of inverse intensity ratios since they provide redundant information.  For instance, 

in Marker Set-1 we used the ratios DNA/pPTEN, pSTAT3/pPTEN and DNA/pSTAT3 

(without using pPTEN/DNA, pPTEN/pSTAT3 and pSTAT3/DNA) when evaluating the 

features. To reduce computational workload (there were approximately 200,000 cells per 

marker set), 10% of the cells in the non drug-treated dataset were randomly sampled from 

all wells (with replacement) for each marker set m to form an initial sample set S
(m)

. The 

weights assigned to individual wells were determined proportionally to the total number of 

cells detected per well. Feature data associated to these randomly sampled cells were used 

to normalize feature values and create mathematical models to characterize phenotypic 

heterogeneity as described below. The feature values were transformed to z-scores, each 

with respect to its mean and standard deviation computed from the sample set S
(m)

, before 

reduction to their most prominent principal components (PCs). The feature dimension after 

principal component analysis (PCA)-based reduction was 9 for Marker Set-1, 6 for Marker 

Set-2, 2 for Marker Set-3 and 5 for Marker Set-4. The choice of dimension was made for 

each marker set by computing an eigenvalue noise threshold for the covariance matrix of 

feature data. The threshold was determined by randomly scrambling the order of feature 

dimensions for each sampled cell, and computing the eigenvalues of the resulting 
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(randomized feature) covariance matrix. The noise threshold was chosen to be double the 

largest such eigenvalue. Any dimensions whose eigenvalues from the (non-randomized) 

feature covariance matrix did not meet this threshold were discarded. For convenience, we 

denote by F
(m)

 the PCA-reduced feature data of the cells selected in S
(m)

 for marker set m. 

Reference models of heterogeneity. All subpopulation reference model computations 

used the sampled PCA-reduced feature data F
(m)

 from all non drug-treated H460 clonal 

populations and their parent population as described above (Slack et al, 2008). 

Subpopulation reference models were derived using Gaussian Mixture Models (GMM). 

The GMM parameters were fitted based on the Expectation-Maximization (EM) algorithm 

(Dempster et al, 1977). For each model, EM clustering was executed ten times, starting 

from a K-means clustering (Kaufman and Rousseeuw, 1990) using randomly chosen 

means. The final clustering with the best log likelihood value was chosen as the 

subpopulation reference model. Each run was attempted up to five times with new initial 

conditions until convergence was reached. Bayesian information-theoretical criterion (BIC) 

(Schwarz, 1978) and the Gap statistics (Gap) (Hastie et al, 2001) were used to evaluate the 

optimal number of subpopulations (K). The BIC seeks to maximize the (log) likelihood of 

the observed data samples given the model parameters while minimizing the complexity of 

the model to avoid overfitting. On the other hand, the Gap statistics determined the optimal 

number of clusters (subpopulations) by comparing the change in dispersion within clusters 

to that expected under a uniform null distribution. Due to large sample size, the BIC tends 

to continue growing as K increases. In these situations the best choice typically occurs 

when the BIC-versus-K curve encounters an inflexion. We tested models with different 

values of K ranging from 3 to 20 and found that models with K between 3 and 7 reasonably 

captured the overall cellular heterogeneity using both BIC and Gap criteria (Suppl. Fig. 4). 

In our analysis, a GMM with K = 5 was used for each of the four marker sets unless stated 

otherwise in a text or figure. 
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Subpopulation profiles and enrichment profiles. For each replicate well associated to a 

given clone, PCA-reduced feature data from 1,000 randomly selected cells (with 

replacement) were used to determine a probability distribution (profile) of subpopulation 

assignment. The computed GMM was used to assign to each cell in a population a 

(posterior) probability vector of belonging to each subpopulation. The averaged probability 

vectors over all cells within a population produced a subpopulation profile. The weighted 

average of such profiles across replicate wells, based on the relative total number of cells 

per well, was generated 1,000 times by repeated cell sampling to yield an average 

subpopulation profile for each clone per marker set. To assess the variation in changes to 

subpopulation profiles, we transformed the profile to reflect the log-fold change of 

subpopulations as follow: we define 

 [p1
(C)

 … pK
(C)

] as the subpopulation profile of clone C, 

 [p1
(P)

 … pK
(P)

] as the subpopulation profile of the parent P on the same imaging 

plate. 

Then the component-wise log ratio vector 

 

[ln(p1
(C)

/p1
(P)

) ... ln(pK
(C)

/pK
(P)

)] 

is defined as the subpopulation enrichment of clone C versus parent P. In practice, the 

enrichment value was truncated between -4 and 4 to avoid numerical outliers (Fig. 2). 

Hierarchical clustering and ordering of clones in the hierarchical tree. Average linkage 

hierarchical clustering of subpopulation profiles and enrichment profiles was performed 

using Matlab built-in functions. We used the symmetrized Kullback-Leibler dissimilarity 

measure (Kullback and Leibler, 1951) or the Euclidean distance as distance measure to 

cluster clones when they were represented by their subpopulation profiles or enrichment 

profiles, respectively. Both representations yield comparable results in our study. However, 

the enrichment profiles have the ability to amplify small differences in the composition of 
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subpopulations, which could be beneficial when dealing with small subpopulations. Both 

normalized and non-normalized profiles yield comparable conclusions in our study. For 

visualization, non-normalized profiles are useful for seeing absolute composition of 

subpopulations, while normalized profiles are helpful for comparing subpopulation 

composition across multiple populations and lend themselves better to standard heatmap 

representations. In order to illustrate separation between paclitaxel sensitive and resistant 

clones within the hierarchical clustering, we recursively pivoted each branch of the tree 

from the top to the bottom and reordered its two child nodes so that the average paclitaxel 

sensitivity in the sub-tree spanned by its left-hand side child was always smaller than or 

equal to the one in the sub-tree spanned by its right-hand side child. The pivoting affected 

the linear ordering of clones but preserved the original hierarchical clustering. 

Subpopulation profiles of HBEC clones and selected NCI-60 cell lines.  We computed 

the subpopulation profiles for any additional cell populations based on the original H460 

model of heterogeneity. The fluorescence intensities in the background subtracted images 

were first normalized in the same way as described above. Cellular feature vectors were 

also normalized and reduced using the same parameters as the ones associated to the H460 

model. The subpopulation profiles were then computed as described above. 

Similarity comparison of subpopulation profiles and multidimensional scaling plots. 

Similarity of phenotypic heterogeneity between two clones (or cell lines) was computed 

using the symmetrized Kullback-Leibler dissimilarity between their subpopulation profiles 

(Kullback et al, 1951). For a collection of clones (or cell lines), multidimensional scaling 

(MDS) was performed on the pairwise dissimilarity matrix associated to their K-

dimensional subpopulation profiles (Borg and Groenen, 1997) to yield a configuration of 

points in an s-dimensional space (typically s is much smaller than K) such that the 

Euclidean distances between these points approximate the degree of subpopulation profile 

similarity among the clones (or cell lines). MDS was performed with s = 2 using Matlab 
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software (version 7.4.0). In principle, the resulting MDS plots places clones with similar 

subpopulation profiles closer together, and clones with dissimilar subpopulation profiles 

further apart.  

Measuring and comparing the spread of phenotypic heterogeneity. To estimate the 

spread of phenotypic heterogeneity across the 49 H460 clones and across the 75 HBEC 

clones, we pooled both sets of data to build an overall GMM model, and computed 

subpopulations profiles for all clones with the number of clusters K varying from 3 to 14. 

The 5th and 95th percentile values of the median pairwise KL dissimilarity measure served 

as the confidence interval for the spread of heterogeneity. Next, we randomly sampled 

(without replacement) 40 clones from each collection of clone populations and computed 

their median pairwise Kullback-Leibler (KL) dissimilarity measure. We repeated the 

random sampling 1,000 times to obtain an empirical distribution of the median pairwise KL 

dissimilarity both within our H460 clones ({dH460}) and within our HBEC clones ({dHBEC}). 

The median values of the median pairwise KL dissimilarity measure were used to quantify 

the spread of phenotypic heterogeneity within each collection of clones across varying 

numbers of subpopulations. A one-sided two-sample Kolmogorov-Smirnov test was 

applied to the two empirical distributions {dH460}, {dHBEC} to assess whether the H460 cell 

line exhibited significantly larger spread of phenotypic heterogeneity than the HBEC cell 

line (Suppl. Table 4). 

Drug sensitivity assignment. Drug sensitivity of each clone was calculated based on the 

log ratio between the numbers of non-apoptotic cells in the drug-treated case over non 

drug-treated case compared to the parental clone. For each given clone C, the relative drug 

sensitivity of clone C versus parent P was defined by the log ratio 
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where: 

nC
+
, nP

+
: number of drug-treated cells observed in C and P; 

aC
+
, aP

+
:  number of apoptotic, drug-treated cells observed in C and P; 

nC
-
, nP

-
: number of only DMSO-treated cells observed in C and P; 

aC
-
, aP

-
: number of apoptotic, only DMSO-treated cells observed in C and P. 

A clone C is considered relatively sensitive (S) if the index DS(C) is positive and relatively 

resistant (R) if the index is negative. In the H460 drug sensitivity assay, we encountered an 

image focus issue on one plate and did not have the values of nP
+
, aP

+
 and nC

+
 for clones 

33 and 35. Hence clones 33 and 35 were discarded from all analysis involving drug 

sensitivity. To estimate the drug sensitivity of five other clones on that plate (32, 34, 36, 41, 

49) for which only the variables nP
+
 and aP

+
 were missing, we recovered nP

+
 by manual 

counting using the brightfield images (which were in reasonably good focus) and estimated 

aP
+
 using the average apoptotic rate of the parental clone from the six other plates, defined 

as rP, so that aP
+
 = rP  nP

+
.  

Measuring drug sensitivity separation accuracy based on subpopulation profiles. We 

measured the extent to which drug-sensitive and resistant cell populations could be 

separated based on their subpopulation profiles. We considered collections of cell 

populations (e.g. H460 clones), with each member: 1) represented by a subpopulation 

profile (i.e. a vector); and 2) assigned either as drug resistant (R) or sensitive (S) according 

to their drug sensitivity measure.  The hyperplane that “best” separated the sensitive and 

resistant cell populations, based on their subpopulation profiles, was computed using the 

support vector machine (SVM) algorithm implemented in Matlab version 7.4.0 (A linear 
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kernel was used to avoid data over-fitting). Separation accuracy was computed by counting 

the percentage of clones (or cell lines) that were correctly classified by the SVM. We 

assessed the statistical significance p-value of the separation accuracy against a background 

distribution associated to random permutations of drug sensitivity assignment among all 

cell populations. The background distribution of the separation accuracy was estimated 

based on 10
6
 iterations of random permutations of drug sensitivity assignments. 

Measuring drug sensitivity separation among small numbers of cellular populations. 

When the number of clones (cell lines) n is relatively small versus the dimension of 

subpopulation profiles K (e.g. K = 5 and n  10), estimation of the separation significance 

becomes less precise since many configurations of random drug sensitivity (R/S) 

assignment can lead to high separation accuracy. Instead, we chose to assess the extent of 

drug sensitivity separability as follows: 1) apply linear SVM to the dataset and measure the 

separation accuracy; 2) remove r populations from the original dataset and measure the 

separation accuracy; 3) repeat step 2 by considering all possible ways of removing r 

populations from the original dataset, then compute the overall average separation 

accuracy; 4) repeat steps 2-3 for increasing values of r (from 0 to 4 in our study). To 

maintain balance between the numbers of R/S labels, we discarded configurations where 

the numbers of sensitive and resistant populations differ by more than one.  The extent of 

R/S separation in the dataset, for each value of r, was compared to the average separation 

accuracy obtained over all distinct permutations of the R/S labels in the dataset (Suppl. Fig. 

11, 13). Such a comparison provides an indication as to whether the actual configuration 

shows higher level of drug sensitivity separability than random.  

Determination of cell cycle state (Suppl. Fig. 5). To determine the cell cycle state, we 

used an empirical approach based on the distribution of total DNA intensity per cell across 

the H460 clone dataset. A two-class Gaussian mixture model was automatically fitted to 

the distribution of total DNA intensity per cell. The means m1, m2 (with m1 < m2) and 
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standard deviations s1, s2 of the mixture model were used to derive the following 

classification rule: a cell with total DNA intensity Itot is in 

G1 state if Itot ≤ m1 + s1, 

S state if m1+s1 < Itot ≤ m2-s2, and 

G2/M state if Itot > m2-s2. 

 

Preservation of subpopulation profile similarity across marker sets (Suppl. Fig. 10). 

To measure the extent to which similarity of subpopulation profiles among clones (or cell 

lines) is preserved across marker sets (e.g. from marker set P to Q), we proceeded as 

follows: 1) identify the k nearest neighbor clones of clone i based on the KL dissimilarity 

between their profiles in marker set P; 2) compute the average pairwise dissimilarity 

measure between clone i and these k clones in marker set Q, DQ
(k)

(i); 3) build a background 

distribution for DQ
(k)

(i), [DBG,Q
(k)

(i)], by repeatedly computing the average pairwise 

dissimilarity DBG,Q
(k)

(i) between clone i and k other randomly selected clones in marker set 

Q; 4) repeat steps 1-3 for all clones and count the total number of clones for which the 

significance p-value of DQ
(k)

(i) versus [DBG,Q
(k)

(i)] is less than a fixed threshold t (t = 0.05 

in our analysis). In the “random” configuration, we generated for each clone i another 

realization of DBG,Q
(k)

(i), dBG,Q
(k)

(i), estimated its significance p-value against [DBG,Q
(k)

(i)], 

and finally counted the number of clones for which dBG,Q
(k)

(i) is significant against 

[DBG,Q
(k)

(i)]. 

Assessing the accuracy of drug sensitivity prediction of all H460 clones using a Leave-

One-Out strategy (Suppl. Fig. 12). To test how well our heterogeneity models can predict 

drug sensitivity, we used a "leave-one-out" cross-validation approach. Each clone was 

systematically excluded from the training set when building the heterogeneity model and 

then used as the test set for classification. This process was repeated independently for each 

of the 50 clones and 6 marker sets. 
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Measuring the robustness of heterogeneity models in revealing drug sensitivity 

separation (Suppl. Fig. 15). We assessed the degree to which the number of 

subpopulations used in our GMM-based heterogeneity model affects the accuracy of 

separating the H460 clones by their drug sensitivities. Specifically, a ten-fold cross-

validation was performed for different numbers of subpopulations, K (we tested K between 

2 and 14). 

Measuring reproducibility of drug sensitivity separation accuracy over time. A subset 

of 10 H460 clones and the 8 selected NCI-60 cell lines were re-assayed from replicate 

freeze-downs. For the time course experiments, cells were kept in continuous culture for 

extended period after thawing. Results are shown in Suppl. Table 5.  

Measuring reproducibility of subpopulation profiles among replicates wells (Suppl. 

Fig. 8). To test for reproducibility of subpopulation profiles from the three replicate wells 

of each clone, we first generated profiles from 3 replicate wells for each of the 49 clones or 

7 parental controls of the H460 cell line (total number: 168 = 3x(49+7)). We computed the 

cumulative distribution functions (cdf) for the pairwise Kullback-Leibler (KL) dissimilarity 

measures, averaged over different choices of triplets of subpopulation profiles. The triplets 

of profiles were chosen to be replicates of the same clones ("intraC"); distinct clones 

belonging to the same cluster in the hierarchical trees as illustrated in Suppl. Fig. 7 

("intraK"); or clones from distinct clusters in the hierarchical trees ("interK"). We 

measured the distributions of intraC, intraK and interK by applying four different threshold 

values (th = 0.1, 0.2, 0.3, 0.4) to the linkage distances between linked nodes to split the 

hierarchical tree (the linkage distances were provided by the Matlab function linkage.m). 

Threshold th=0 assigns each profile to a separate cluster, while th=1 performs no cut, i.e. 

one cluster contains all profiles. When replicate wells yield reproducible subpopulation 

profiles, the cdf's for intraC and intraK should lie above that of interK (that is, for intraC 

and intraK should have much smaller values than interK). 
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Data availability. Due to the large data size, post-processed data along with README.txt 

can be downloaded at:  

http://www4.utsouthwestern.edu/altschulerwulab/papers/msb2010/default.html.  

Raw images of a subset (extreme 10 + parent, MS1) (~3 GB) or the complete set of H460 

clones (~17 GB per marker set) are available upon request. 

 

Supplementary Table S1. Antibodies and dyes used in immunofluorescent staining. 

Marker Set Marker Active/Inactive Catalog # Lot # Dilution 

DNA Hoechst 33342  Invitrogen H1399 - 10 μg/ml 

Marker Set 1 
phospho-STAT3 (S727) Active 

BD  Transduction 

Laboratories 612543 
97087 1:100 

phosphor-PTEN (pSpTpS380/382/385) Inactive Biosource 44-1066G 103 1:100 

Marker Set 2 
phospho-ERK1/2 (pTpY185/187) Active Biosource 44680A1 1388699A 1:100 

phospho-P38 (pTpY180/182) Active Sigma M8177 104K4788 1:100 

Marker Set 3 

E-cadherin FITC - 
BD  Transduction 

Laboratories 612131 
45433 1:100 

-catenin - 
BD Transduction 

Laboratories  610154 
76283 1:100 

phospho-GSK3-  (S9) Inactive Biosource 44-600G 2601 1:100 

Marker Set 4 

phospho-Akt (pS473) Active Biosource 44-621G 502 1:100 

Histone 3 Lysine-9 acetylated (H3K9-Ac) 

 
Active Abcam ab12179 648913 1:500 

Marker Set 5 

Actin (Phalloidin Alexa 488) - Invitrogen A12379 23896W 1:40 

–tubulin - 
BD Transduction 

Laboratories 558608 
68808 B 1:50 

Marker Set 6 

Glyceraldehyde 3-Phosphate 

dedhydrogenase (GAPDH) 
- Abcam ab9485 448196 1:500 

Pericentrin - Abcam ab4448 26969 1:500 

Apoptotic Marker 

(Drug experiment) 

Annexin-V-FITC Active 
BD Pharmingen 51-65874X 

(556420) 
88205 1:100 

Cleaved Caspase-3 Active 
BD Transduction 

Laboratories 559565 
180 1:100 

Poly ADP Ribose Phosphate (PARP) Active 
BD Transduction 

Laboratories 550781 
97484 1:100 

Secondary 

Antibodies 

Anti-mouse IgG-Alexa 488 - Molecular Probes A11001 56881A 1:1000 

Anti-mouse IgG-Alexa 647 - Molecular Probes A21235 51782A 1:1000 

Anti-mouse  IgG-Alexa 546 - Molecular Probes A11003 53045A 1:1000 

Anti-rabbit  IgG-Alexa 488 - Molecular Probes A11008 54155A 1:1000 

Anti-rabbit  IgG-Alexa 546 - Molecular Probes A11010 435414 1:1000 

Anti-rabbit IgG-Alexa 647 - Molecular Probes A21244 459547 1:1000 
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Supplementary Table S2. List of NCI-60 cell lines with extreme paclitaxel sensitivity 

tested for correlation between patterns of heterogeneity and drug sensitivity 

(http://dtp.nci.nih.gov/docs/cancer/cancer_data.html). 

 Cell line Origin Paclitaxel GI50 index 

Sensitive 

HCT-116 Colon -8.573 

HT29 Colon -8.57 

MCF7 Breast -8.545 

NCI-H460 Lung -8.53 

HS 578T Breast -8.506 

Resistant 

CAKI-1
†
 Renal -6.686 

ACHN Renal -6.384 

OVCAR-4 Ovarian -6.189 

UO-31 Renal -5.96 

NCI/ADR-RES Ovarian -5.515 

 

(†) CAKI-1 was discarded since its identity could not be confirmed by DNA fingerprinting. 

 

Supplementary Table S3. Layout of 96-well imaging plate for assaying non-drug treated 

(top) and drug-treated (bottom) cell populations (Rj = replicate well j, j=1…3). 

Plate layout for assaying non-treated cells 

 

Clone 1 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

Clone 2 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

Clone 3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

Clone 4 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

Clone 5 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

Clone 6 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

Clone 7 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

Parent R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

 

Plate layout for assaying drug sensitivity  

 

Clone 1 R1 R2 R3 R1 R2 R3    R1 R2 R3 

Clone 2 R1 R2 R3 R1 R2 R3    R1 R2 R3 

Clone 3 R1 R2 R3 R1 R2 R3    R1 R2 R3 

Clone 4 R1 R2 R3 R1 R2 R3    R1 R2 R3 

Clone 5 R1 R2 R3 R1 R2 R3    R1 R2 R3 

Clone 6 R1 R2 R3 R1 R2 R3    R1 R2 R3 

Clone 7 R1 R2 R3 R1 R2 R3    R1 R2 R3 

Parent R1 R2 R3 R1 R2 R3    R1 R2 R3 

 

Marker Set1 Marker Set 2 Marker Set 3 Marker Set 4 

DMSO DMSO+Doxorubicin DMSO+Paclitaxel 
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Supplementary Table S4. Kolmogorov-Smirnov (KS) two-sample, one-sided test showed 

that the collection of H460 clones exhibits significantly larger spread of phenotypic 

heterogeneity than the collection of HBEC clones ((
†
)p-value < 10

-2
; p-value < 10

-3
 for all 

other cases). 

 

Number of clusters 
KS score 

Marker Set 1 Marker Set 4 

3 0.2297 0.0917 

4 0.2678 0.0767 

5 0.2305 0.0868 

6 0.1822 0.0736 

7 0.1950 0.0573
†
 

8 0.1339 0.0678 

9 0.1241 0.0822 

10 0.1370 0.0928 

 

 

 

Supplementary Table S5. Reassessment of a subset of 10 H460 clones and the 8 selected 

NCI-60 cell lines from replicate freeze-downs showed that the drug sensitivity separation is 

reproducible. 

 

Cell Type Time 
Marker Set 

1 4 

Extreme 10 H460 

Original 100 80
†
 

Repeat 100 100 

Week 1 70
†
 80

†
 

Week 2 80
†
 70

†
 

Week 4 60
†
 80

†
 

Extreme 8 NCI-60 

Original 87.5
†
 100 

Repeat 75
†
 100 

Week 8 87.5
†
 100 

 

(†) Separation accuracy not one standard deviation above the average accuracy over all possible permutations 

of drug sensitivity assignment  
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Figure S1. Heterogeneous signaling states are observed within and among a panel of non small cell lung cancer (NSCLC) H460 clones.  
A-B. A panel of 49 H460 clones (A) display phenotypically diverse signaling states as measured by activation and colocalization patterns of 
pSTAT3 and pPTEN immunostaining (B). While some clones are phenotypically similar to the parent (e.g. clones 20 and 33), others are 
dramatically dissimilar to the parent but similar to each other (e.g. clones 64 and 82). C. Heterogeneous cellular signaling states are observed 
within each clone. An expanded view of clone 20 reveals the presence of distinct, stereotyped cellular signaling states. Arrowheads indicate cells 
shown in (D). D. Distinct cell states present in one clone may be found in varying proportions within other clones. Shown are four example cells in 
distinct signaling states from clone 20. Cells with phenotypes similar to (i-iv) are seen in high proportions within the parent culture, clone 9, clone 
49 and clone 82, respectively. Pseudocolors for images in (B-D) are: DNA-blue, pSTAT3-green, pPTEN-red. Scale bars: 20μm in (B-C) and 10μm 
in (D).



Figure S2. Non small cell lung cancer (NSCLC) H460 clones exhibit phenotypic variability. The H460 clones 
show a high degree of variability for growth rate, total observed cell count, local cell density (clumpiness), and 
morphology (as measured by cell area and eccentricity). 
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Figure S3. Clones of similar drug sensitivities have similar phenotypes across all marker sets. Shown are thumbnail images of all clones 
(columns) sorted in the same order as in Figure 2, from all four marker sets (rows). Image pseudocolors are as in Figure 1A. Relative drug sensitivities to 
paclitaxel are displayed under the thumbnail images according to the color bar above (red: resistant, black: intermediate, green: sensitive). Scale bar: 
20μm.
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Figure S4. Optimal number of subpopulations in the reference model is suggested based on the Bayesian information-
theoretical criterion (BIC) and the gap statistic (Gap). Traditionally the optimal number of subpopulation is found at the 
maximum of BIC value or before the gap statistic shows a significant decrease. However, with our large sample size (18,000) 
the BIC curve grows with increasing number of subpopulations. Therefore, we choose to identify the optimal number of 
subpopulations where the slope of the BIC curve starts to decrease (i.e. where the BIC curve shows an “elbow”). For all four 
marker sets, we found that the suggested optimal number of subpopulations consistently ranges between three and seven 
(black arrows). For simplicity, we use reference models with five subpopulations for all four marker sets.
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BA

Figure S5. Phenotypic subpopulations identified by our Gaussian mixture models contain similar proportion of cells across different 
stages of cell cycle. A. Two-class Gaussian mixture model with means m1,m2 and standard deviations s1,s2 was automatically fitted to the 
histogram of total DNA intensity in each clonal population (black dashed line: density function of the fitted Gaussian mixture distribution, scaled so 
as to fit the contour of the histogram). Two threshold values m1+s1, m2-s2 (gray dashed lines) were used to classify the cell cycle stage of each cell 
either as G1, S or G2/M. B. The distribution of cell cycle stages within each phenotypic subpopulation was obtained by averaging over all H460 
clonal populations.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2x 10
60

0.005

0.01

0.015

0.02

0.025
G1 S G2/M

m1

s1

m2

s2

Total DNA fluorescence intensity

Fr
eq

ue
nc

y

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

25%

50%

75%

100%

G1
S
G2/M

C
el

l c
yc

le
 s

ta
ge

 d
is

tri
bu

tio
n

Phenotypic subpopulation id

MS1 MS2

MS3 MS4
S1 S2 S3 S4 S50% S1 S2 S3 S4 S5

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5



31 62 9 21 120 109 65 11 18 35 8 16 33 19 6 124 119 17 105 116 3 7 49 5 55 61 36 22 51 53 2 50 20 1 23 P 4 41 34 12 96 24 100 72 32 63 52 92 82 64

MS1
S1
S2
S3
S4
S5

120 16 105 11 116 119 5 124 109 12 9 65 20 55 61 49 62 31 P 51 53 50 22 36 35 1 8 17 33 7 6 21 23 3 18 41 34 24 96 100 19 2 52 32 4 92 82 72 63 64

MS2
S1
S2
S3
S4
S5

MS4
S1
S2
S3
S4
S5

31 124 22 20 109 116 62 23 120 33 3 105 119 P 49 4 55 36 35 19 5 21 2 7 18 9 11 16 17 51 61 53 1 34 50 8 100 12 24 65 96 72 41 52 32 6 63 92 82 64

MS3
S1
S2
S3
S4
S5

8 17 120 51 119 16 18 11 19 23 35 21 49 105 109 124 116 9 33 55 61 36 3 20 65 31 22 P 4 53 7 41 12 52 32 1 2 5 62 100 50 6 96 63 34 72 64 92 82 24

Figure S6. Clones with similar patterns of subpopulation enrichments tend to exhibit similar sensitivities to paclitaxel and doxorubicin. 
Subpopulation enrichment profiles are computed for each marker set as the log ratio of clone subpopulation proportions relative to the H460 parent 
population. An original clone ordering is determined by hierarchical clustering based on the similarity of their subpopulation enrichment profiles (using 
Euclidean distance). Tree nodes were then pivoted so that the average drug sensitivity of all clones under the left node of each branch is smaller or 
equal to the one under the right node (dendrogram at top). Drug sensitivities of each clone to paclitaxel are displayed in red (resistant), black 
(intermediate) and green (sensitive) according to the red-black-green scale bars above. Top row: paclitaxel; bottom row: doxorubicin. (Gray: paclitaxel 
sensitivity scores of clones 33 and 35 are unreliable due to an image-focus problem.)
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Figure S7. Clones with similar patterns of subpopulation profiles tend to exhibit similar sensitivities to paclitaxel and doxorubicin. Subpopulation profiles 
are computed for each marker set. An original clone ordering is determined by hierarchical clustering based on the similarity of their subpopulation profiles (using 
Kullback-Leibler dissimilarity measures). Trees were created using the “average” method in Matlab. Tree nodes were then pivoted so that the average drug 
sensitivity of all clones under the left node of each branch is smaller or equal to the one under the right node (dendrogram at top). Relative drug sensitivities are 
displayed under the clone indices according to the red-black-green scale bars above (red: resistant, black: intermediate, green: sensitive). Top row: paclitaxel; 
bottom row: doxorubicin. (Gray: paclitaxel sensitivity scores of clones 33 and 35 are unreliable due to an image-focus problem.)
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Figure S8. Replicate wells possess reproducible subpopulation profiles. Shown are the cumulative distribution functions for pairwise Kullback-Leibler (KL) 
dissimilarity measures, averaged over different choices of triplets of subpopulation profiles. The triplets of profiles were chosen to be replicates of the same 
clones (intraC, red); distinct clones belonging to the same cluster in the hierarchical trees as illustrated in Supplementary Fig. 8 (intraK, green); or clones from 
distinct clusters in the hierarchical trees (interK, blue). Shown are results for clustering by applying four different threshold values (th) to the linkage distances 
between linked nodes in the hierarchical tree (provided by the Matlab function linkage.m); th = 0 yields no cuts (each profile is a separate cluster), th = 1 yields 
one cluster (one cluster contains all profiles). Profiles were obtained from 3 replicate wells from each of the 49 clones or 7 parental controls of the H460 cell line 
(total number: 168 = 3x(49+7)).



Figure S9. Cells with non-specific staining of secondary antibodies (without first antibodies) have background-like fluorescence intensity. A. RGB 
images of the H460 parental clone stained with 1) MS4 (Hoechst + primary and secondary antibodies) , 2) Hoechst + secondary antibodies, and 3) Hoechst 
alone. B. Average intensities in the DNA region obtained from secondary staining (red) and DAPI staining plus auto fluorescence (green) have very low value in 
the 488 and 546 channels (near background level) as opposed to those obtained from MS4 (blue). C. Subpopulation profiles of 8 NCI cell lines selected from NCI 
60 panel (Supplementary Information) stained with secondary antibodies were dominated by a single subpopulation (S2). 
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Figure S10. Similarity of phenotypic subpopulation profiles among the 
H460 clones is significantly preserved across different marker sets. 
Shown are the numbers of H460 clones that preserve significantly higher 
average similarity (in marker set 2) to their k nearest neighbors derived from 
marker set 1. The significance p-value was set to 0.05. The random case was 
obtained by replacing the k nearest neighbors by k randomly drawn distinct 
clones from the entire collection of clones (Supplementary Information).
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Figure S11. Measure of the separation between a small number of extreme sensitive (S) and resistant (R) cellular 
populations to paclitaxel. This procedure was applied when only a small number of data points were available (10 or less) 
and measure of the statistical significance of separation by drug sensitivity became less precise. Significance of the 
separation is, instead, determined by whether or not the separation accuracy of the actual assignment (blue circle) is higher 
than that of the random configuration (blue circle with an additional of one standard deviation). We measured the extent of 
separability between R/S clones by considering subsets of configurations where r clones (cell lines) were removed from the 
dataset. Blue circle: average separation accuracy by linear SVM. Gray circle: average separation accuracy by linear SVM 
over random permutation of drug sensitivity assignments. Gray error bars: standard deviation of the separation accuracy 
across random permutations of drug sensitivity assignments.
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Figure S12. The H460 heterogeneity model showed robust prediction accuracy of drug sensitivity across all four sets of signaling markers but 
not for “neutral” markers. The prediction accuracy results were obtained using a leave-one-out cross-validation, where each clone was excluded once 
from the training set when building the heterogeneity model and used as the test set. Left panel: red/green squares indicate SVM decisions of 
resistance/sensitivity for each clone in each marker set (top) and its actual drug sensitivity (bottom). Right panel: overall average prediction accuracies for all 
clones and for the extreme 10 (5 most sensitive and 5 most resistant). 
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Figure S13. Separation accuracy for the paclitaxel resistant and sensitive cell lines is similar between a 
Gaussian Mixture Model (GMM) obtained from the NCI-60 (extreme 8) cell lines and the original H460 model.  
A new heterogeneity model was generated based solely on the NCI-60 (extreme 8) cell lines both for marker set 1 
and for marker set 4. We removed the least resistant cell line from NCI9 to build a balanced data set (4 resistant and 
4 sensitive cell lines). This model was used to derive heterogeneity profiles and calculate separation accuracies 
between the 4 most sensitive and 4 most resistant cell lines. This result is consistent with the bottom two panels of 
Supplementary Figure 11B which was obtained from the H460 model.
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Figure S14. Heterogeneity profiles of H460 clones based on non-signaling markers shows no correlation to paclitaxel drug 
sensitivity. A. MDS plots for marker sets MS5-6 do not show any separation between paclitaxel-sensitive and resistant clones. B. 
The neighborhood relationship among the extreme paclitaxel-sensitive clones is not preserved in the two non-signaling marker sets.
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Figure S15. Heterogeneity profiles computed over a 
range of subpopulations can separate H460 clones by 
paclitaxel sensitivity. Tenfold cross-validation on drug 
sensitivity separation consistently shows that a small number 
of subpopulations gives the best separation performance 
across all four marker sets.


