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SI Section A: Discussion Accompanying Figs. S1–S6
Fig. S1. In agreement with previous studies (1–3), I find no tran-
siently increased activity with high-frequency oscillations in ran-
dom networks with linear coupling. Fig. S1A shows a simulation of
the samenetwork andwith the same initial conditions as in Fig. 1A,
up to the dendritic modulation function [here: σ(ε) = ε]. After
external stimulation of an initial group, the group size of the ini-
tiated chain decreases quickly and in nearly every step. This de-
crease can be understood by considering the transitionmatrix (Fig.
S1B): There is no range of amplification; short-lived, enhanced
propagation of synchrony does not occur. With high probability,
response pulses are smaller than preceding pulses, in particular for
larger pulse sizes. The analytically and semianalytically derived
mean response pulse sizes show a small, increasing deviation from
the numerical estimations for larger initial pulse sizes: In the an-
alytical computations, I assume that neurons contributing a spike
to a pulse will not contribute a spike to the succeeding pulse be-
cause of their relative refractoriness. This assumption is not valid
for very large pulses generating very strong inputs.

Fig. S2. Fig. S2 shows that short-lived, enhanced propagation of
synchrony in front of a background of irregular activity occurs
robustly in supralinearly coupled networks in contrast to linearly
coupled networks. The generation depends on the networks’
coupling strengths, which are parameterized by the mean total
excitatory coupling strength �εEx;tot and by the mean total in-
hibitory coupling strength �εIn;tot in the network. In each trial,
chains of propagating synchrony are initiated by external stim-
ulation of a group of g′0 = 45 neurons. In Fig. S2, blue indicates
short-lived, enhanced propagation of synchrony (at least one
pulse is larger than 2g′0, and pulse sizes reach the level of
spontaneous synchronization within at least 10 steps). Green
indicates stable propagation of synchrony (group size stays above
the level of spontaneous synchronization for at least 10 steps,
practically not present). Red shows unstable background activity
(level of spontaneous synchronization is larger than or equal to
g′0, often indicating epileptiform network activity). An event of
short-lived, enhanced propagation of synchrony may (and, de-
pending on the network parameters, often does) consist of only
a few synchronous pulses.
In Fig. S2A, sharp transitions in the frequency of occurrence

of enhanced propagation of synchrony (or epileptiform activity)
are present in the direction of changed excitation strength.
These sharp transitions are a consequence of the homogeneous
coupling strengths and the sharp onset of supralinear amplifi-
cation. They are found at �εEx;tot ¼ 47:5 mV; �εEx;tot ¼ 51:81 mV,
and �εEx;tot ¼ 57 mV, corresponding to the transition from 13 to
12, from 12 to 11, and from 11 to 10 excitatory inputs needed for
the generation of a dendritic spike. The transitions are smooth-
ed, e.g., when considering an inhomogeneous coupling strength
distribution, as shown in Fig. S2C. Here, individual coupling
strengths are distributed uniformly in an interval 0.03 mV in
width around the mean strength. The results from simulations of
linearly coupled networks (Fig. S2D) are qualitatively unchanged.
The parameters range from �εEx;tot ¼ 42 mV to �εEx;tot ¼ 63 mV

and from �εIn;tot ¼ − 42 mV to �εIn;tot ¼ − 63 mV in steps of 0.375
mV (40 simulations each). For networks with supralinear den-
dritic interactions, a larger initial group size also can generate
short-lived, enhanced propagation of synchrony in regions with
smaller �εEx;tot, because the range of nonlinear enhancement (Fig.
1) is shifted to larger pulse sizes and then can be reached. In the
linearly coupled network, because of the shape of the transition

matrix (Fig. S1), short lived, enhanced propagation of synchrony
does not occur. The shape might be different in very different
parameter regimes (4).

Fig. S3. Fig. S3 shows the typical dynamics of different single
neurons during an event of increased activity and high-frequency
oscillations in model 2. Fig. S3A displays the dynamics of an ex-
citatory neuron which does not participate in the event, Fig. S3B
displays the dynamics of an excitatory neuron which participates
in the event, and Fig. S3C shows the dynamics of an inhibitory
neuron, each during the event displayed in Fig. 3A. Excitation
and inhibition are enhanced in excitatory neurons during events
(Fig. S3 A and B, second and third rows) because of the increased
firing rate in the excitatory and inhibitory neuron population.
Excitation in inhibitory neurons is enhanced; the increase of in-
hibition is comparatively small because of the very sparse re-
current connectivity within the inhibitory neuron population and
their comparatively small number (larger excursions in the sec-
ond row of Fig. S3C are caused by external inputs). For the ex-
citatory neurons, in the lowest row, the times at which the soma
responds to a dendritic spike are marked in green. In the non-
participating neuron (Fig. S3A), a dendritic spike is generated
that induces a current pulse and a steep depolarization of the
somatic potential (spikelet) but no somatic spike, because the
soma was not sufficiently depolarized previously. This sub-
threshold excitation is a consequence of the size of the current
pulse chosen in agreement with experimental findings on supra-
linear dendrites (5–7). Different experimental conditions (e.g.,
de-inactivated sodium channels in proximal dendrites) or simul-
taneous dendritic spike arrivals from multiple dendritic com-
partments might lead to stronger depolarizations and to reliable
somatic spike generation. In the participating neuron (Fig. S3B),
the first dendritic spike generates a somatic spike. The inhibitory
neurons spike with high rate around 200 Hz (Bottom row in Fig.
S3C) because of their fast-response properties, the increased
excitation, and the comparably weakly increased inhibition.

Fig. S4. Fig. S4 illustrates that spiking activity during intermittent
high frequency oscillations can reflect underlying network
structures. In Fig. S4 A and B, only the recurrent connections of
a subpopulation of the excitatory neurons allow supralinear
dendritic interactions. The phases of spontaneously increased
activity with high-frequency oscillations are essentially restricted
to this subpopulation and to the inhibitory population. Fig. S4A
displays the rate of the inhibitory population (Upper, bin size 1
ms) and the spiking activity of 50 inhibitory neurons (Lower).
Fig. S4B displays the rate of the excitatory population (Upper,
bin size 1 ms) and the spiking activity of 400 excitatory neurons
(Lower), where neurons 1–200 belong to the subpopulation with
supralinear dendritic interactions, and neurons 201–400 belong
to the purely conventionally coupled subpopulation. Fig. 3B
shows the event at t = 1,700 ms.
Fig. S4 C–F displays the spiking dynamics of a network with

a feed-forward structure. It consists of a sequence of groups in
which connections from one group to the next allow supralinear
dendritic interactions (group size: 350 neurons). The spiking ac-
tivity during phases of high-frequency oscillations reflects this
structure. Around times t0 = 500 ms, t0 = 1,000 ms, and t0 = 1,500
ms, external stimulation excites 40, 60, and 80 randomly chosen
neurons within the first group to spiking (spike times normally
distributed around t0, SD 1 ms). The entire structure already is
reflected at an initial pulse size of 60 neurons. Fig. S4C illustrates
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the spiking activity of the inhibitory population (Upper) and of the
excitatory population (Lower). Fig. S4 D–F displays the single
events. Upper panels display the rate of the excitatory population
(bin size 0.5 ms). Lower panels show the spiking activity. The
event at t0 = 1,000 ms is displayed in Fig. 3C.

Fig. S5. During phases of increased activity with high-frequency
oscillations, the excitatory and the inhibitory neuron populations
generate pulses of synchronous spikes. The pulses of the inhibitory
population are delayed with respect to the pulses in the excitatory
population (Fig. 3A), as observed for sharp wave/ripples (SPW/Rs)
in experiments. Fig. S5 shows that even quantitative agreement
can be achieved if the model incorporates the response properties
of the fast hippocampal interneurons relevant for SPW/Rs and the
frequent occurrence of projections from excitatory to inhibitory
neurons (8–11). I adapt the parameters of the leaky integrate-and-
fire neurons to induce response properties similar to those found
in ref. 8.
To quantify the time and phase lags, I determined the average

spike rates during an event in 10 trials with a simulated time of 25
s. Events i were initiated by external stimulation every 250 ms
and were cut out and aligned with respect to the peak times t0,i of
the probability distributions of the stimulating pulses. Fig. S5A
shows the firing rates of the excitatory (blue; Upper) and of the
inhibitory (red; Lower) neuron population during a single event.
t0,i is set to t0,i = 0 ms. Fig. S5B displays the mean rate for one of
the trials. The blue and red curves display the rates of the ex-
citatory and inhibitory populations, respectively. In agreement
with experimental observations (12, 13), the time lags generally
are very short (1–2 ms) (8–10), and the phase lag is around 90°
for the largest pulses (Fig. S5E). I further determined the au-
tocorrelation of the rate of the excitatory population and the
cross-correlation of the rate activity of the excitatory and in-
hibitory neuron populations in each trial (correlations not nor-
malized). Fig. S5C displays the averaged autocorrelation (black
curve) together with two samples from single trials (gray curves)
and the SD of the distribution (error bars at every tenth point).
The peak at τ = 0 ms is truncated. The averaged autocorrelation
assumes its second maximum at tmax,AC = 4.7 ms. The mean of
the leading oscillation frequencies of the individual simulations,
as determined by the peaks of the power spectral densities, is
201.3 Hz (SD 0.5 Hz). Fig. S5D displays the averaged cross-
correlation of the excitatory and inhibitory activity (black curve)
together with two samples from single trials (gray curves) and
the SD of the distribution (error bars at every tenth point).
The averaged cross-correlation assumes its first maximum at
tmax,CC= 1.2ms, in agreement with experimental findings (12, 13).
In biological neural networks, additional anatomical and dy-

namic features could promote synchronous and early firing of
inhibitory neurons. Inhibitory neurons are coupled via electrical
synapses that promote synchronous firing (14, 15). The excitatory
population strongly projects on the inhibitory population (16),
and the number of relevant interneurons is comparably small
(estimates yield about 5,000–10,000 neurons distributed over
CA1) (11, 17). During events these interneurons fire at very high
rate, often around 150–250 Hz (12, 13, 18). This data might in-
dicate that the response to excitatory input is saturated: Upon
the strong excitatory input during SPW/Rs, and supported by
electrical coupling, a majority of interneurons could send a spike
before the excitatory input has reached its maximum. Because of
refractoriness and recurrent inhibition, subsequent firing of in-
terneurons could be suppressed, and the rate of the interneuron
population might decrease although the excitatory input still
increases. The comparably broad temporal extent of excitatory
pulses in hippocampal SPW/Rs and the resulting broad rising
input flanks might strengthen such an effect. The peak of in-
terneuron firing thus could be arbitrarily close to the peak of
excitatory firing or even precede it.

In the simulations, the time constants of the excitatory input
current and of the membrane in the inhibitory leaky integrate-
and-fire model neurons are chosen to generate a 20–80% rise
time of 0.6 ms and a half width of 4.0 ms for an excitatory
postsynaptic potential (EPSP) of 2.1 mV (8). Further, a 25%
probability for the existence of an excitatory-to-inhibitory cou-
pling is assumed (11). The network dimensions and the synaptic
delay are at their standard values; the conduction velocity is
increased to 350 μm/ms, yielding a mean delay of 1.0 ms between
the presynaptic spike and the onset of postsynaptic EPSC (de-
tails are given in SI Text, Section C). These response times are
slightly slower than the mean values measured in ref. 8. To align
and to gather events in a simple manner, I studied the lags in
events initiated by external stimuli. The frequency of external
Poissonian input spike trains was decreased for excitatory neu-
rons and increased for inhibitory neurons, suppressing sponta-
neous events that might interfere with induced ones. Further,
higher input rates decrease the effective membrane time con-
stant of neurons (19). Events were initiated by exciting a pop-
ulation of n = 40 neurons to spike. The spike times were chosen
randomly according to a Gaussian distribution with SD σ= 1 ms.
The mean rate during events was determined in bins of 0.02 ms
and thereafter was smoothed using a Gaussian kernel of width
σ = 0.25 ms. The phase lag was derived by taking the quotient of
the temporal distance between the peak of the excitatory rate
and the subsequent peak of the inhibitory rate divided by the
temporal distance between subsequent peaks of the rate of the
excitatory population.

Fig. S6. In vivo studies in hippocampal region CA3 found that
oscillations associated with sharp waves are slower and less pro-
nounced than those in region CA1 (12, 20). This decrease of
oscillation frequency might be due to the prominent long-range,
global connectivity in CA3 (17, 21–24) and the strongly inhomo-
geneous conduction velocity. Fig. S6 illustrates the idea.
Comparably little is known about the nonlinear properties of

dendrites in CA3, but the high similarity between CA1 and CA3
neurons suggests properties similar to those in CA1 (17). I thus
simulated a network incorporating supralinear dendritic inter-
actions as for the CA1 model. The network is spread over
a square with edge length X = 2.8 mm (mean distance between
neurons, 1.45 mm) (22–24) and has a Gaussian conduction ve-
locity distribution with a mean of 390 μm/ms and a SD of 140
μm/ms (ref. 25; values in ref. 26 are smaller), truncated at zero.
The network shows spontaneously intermittent events of in-
creased activity. There are only weak (if any) oscillations in the
rate activity during single events, as illustrated by Fig. S6A. The
inhibitory population does not show oscillations because of the
strong dispersion of inputs from the excitatory population. Their
occurrence might require local coupling of interneurons or more
pronounced oscillations of the excitatory population. The global
power spectral density of the spike rates of excitatory neurons
(squared amplitude of the discrete modes divided by the band-
width) is displayed in Fig. S6B for 50 s of simulated time
(Hamming window function, power spectrum smoothed with
Gaussian kernel of width σ = 11 Hz). It has a weak peak orig-
inating from oscillations associated with events and from oscil-
lations during background activity (20). The leading frequency is
about 140 Hz, compatible with the frequency range observed in
CA3 in vivo experiments (12, 20).
For comparison, in Fig. S6 C and D, the edge length was re-

duced to X = 450 μm (i.e., to the typical slice thickness in an in
vitro experiment) (27–29). The network shows spontaneously
intermittent events of increased activity with pronounced, highly
synchronous rate oscillations in both neuron populations at
a leading oscillation frequency of 198 Hz, in agreement with in
vitro observations (27–29). Fig. S6C shows two instances of the
rate activity of the excitatory population during events. The in-
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cidence of events was higher in the simulation with reduced edge
length. To allow a direct comparison of the spectral power in
both simulations, the number of events was reduced to the
number in the simulation with large X by cutting out (deleting)
random events. The power spectrum (Fig. S6D) shows a consid-
erably larger peak at the leading frequency compared with the
spectrum of the network with large X. This larger peak reflects
the more pronounced oscillations during events. (For the origi-
nal rate activity in the network with reduced X, the peak in Fig.
S6D is about twice as high, reaching 21 spikes2/ms.)

SI Section B: Further Analysis of the Model Dynamics
Estimates of the Frequency Range. In the following subsections, I
estimate the range of the frequencies predicted by my models.
Action potentials in CA1 which are generated by dendritic spikes
have been found to occur 5 ms after presynaptic stimulation with
submillisecond temporal precision (5). We therefore expect the
peaks of maximally synchronized activity to be separated by time
intervals of about 5 ms, i.e., an oscillation frequency of about 200
Hz. The frequency is remarkably stable even when the model
parameters are varied over broad ranges. This stability reflects
the high temporal precision and the fixed time scale introduced
by fast dendritic spikes in the neuronal output (5, 7, 30). The
analytical and numerical predictions of models 1 and 2, in par-
ticular the dependencies on the model parameters, agree very
well. I further derived analytical estimates in a low-frequency
limit which yield lower frequency bounds, with similar de-
pendencies on the parameters. The results are similar because
the mechanism underlying the generation of high-frequency os-
cillations is the same in each of the models—namely, the prop-
agation of synchrony mediated by supralinear dendritic
interactions.
The oscillation frequency ranges are in very good agreement

with the experimentally observed range of 140–250 Hz (12, 27–29,
31, 32) for high-frequency ripples. The ranges depend mainly on
the delay times of the excitatory to excitatory connections, i.e.,
on the axonal delay time, the synaptic delay, and the latency of
the dendritic spike.

Analytical Estimates of the Frequency Range. In model 1, the tem-
poral difference τ between presynaptic spiking and postsynaptic
spiking evoked by a dendritic spike is constant. τ can be de-
composed into two contributions,

τ ¼ τAx þ τpost;AP; [S1]

(i) the axonal delay τAx, i.e., the time from the onset of the
presynaptic action potential to the onset of the synaptic trans-
mission, and (ii) the time τpost,AP from the onset of synaptic
transmission to the onset of the postsynaptic action potential.
The range of local axonal interconnections in CA1 has been
estimated to be of the order of 300 μm (33, 34); in some direc-
tions, connections were found extending over 400 μm and more
(33–36). In my modeling approach I therefore assume that the
networks of neurons cover a square patch of tissue with side
length X, where X is 200–500 μm, and the mean spatial distance
�dX between two neurons is 100–260 μm (SI Text, Section C).
Networks with largerXmight serve as models for different regions
(main text and Fig. S6). I assume that the apparent conduction
velocity of action potentials vAx for the thin, unmyelinated local
connections in CA1 is in the lower range of velocities measured in
unmyelinated axons of the hippocampus, i.e., 200–400 μm/ms (25,
26). The network is randomly connected: Connections are present
with constant probabilities, which depend on the type of the pre-
synaptic and the postsynaptic neurons. τAx is computed as the
mean distance divided by the apparent conduction velocity and
is in the range of 0.3–1.3 ms. τpost,AP can be estimated from the
time τstim,AP between focal synaptic stimulation and the peak of

the postsynaptic action potential by subtracting a time τstim for
stimulation and for the rise τrise of the action potential. In the
presence of dendritic spikes, the timing of postsynaptic action
potentials is remarkably precise. Mean values of τstim,AP are 5–
5.1 ms (depending on the stimulus protocol); the SD of the dis-
tributions and the temporal jitters between trials are about 0.1 ms
(5). Focal synaptic stimulation generally is very fast. I assume τstim
to lie between 0 and 0.2 ms; the precise value depends on exper-
imental conditions such as the position of the presynaptic axon
and the synaptic terminal relative to the electrode. Typical values
for the rise time of an action potential in hippocampal region CA1
under in vitro experimental conditions are 0.3–0.5 ms (5, 37, 38),
yielding a range of 4.3–4.8 ms for the values of τpost,AP.
Taken together, the estimations for τ = τAx + τpost,AP yield

a range of 4.6–6.1 ms and thus a frequency range for the oscil-
lation frequency 1/τ of 164–220 Hz, in very good agreement with
the typical range of 140–250 Hz (12, 32, 27–29, 31) found for
high-frequency ripple oscillations in in vivo and in vitro neuro-
biological experiments. Oscillation frequencies outside the range
of the estimation, such as 240 Hz or 250 Hz reported in refs. 29
and 28, might be caused by the specific experimental conditions,
the animal species studied, or the influence of different mecha-
nisms (39). Systematic errors arising from sparse data (e.g.,
about the axonal range in CA1 or the connection probability)
might have distorted the estimation of frequency range. How-
ever, even if one assumes considerably larger errors of the
components of τ, the results still agree well with the experi-
mentally determined frequencies of SPW/Rs in the hippocam-
pus. In the simulations, I used values near the middle of the
biologically plausible ranges, avoiding extremes. If not stated
otherwise, for model 1, I used τ = 5 ms.
I now connect theparameters ofmodel 1with thoseofmodel 2 to

allow a comparison of the predicted oscillation frequencies. In
model 2, the parameters X and vAx characterize the in-
homogeneous axonal delay distribution. These parameters are
connected to the model 1 parameter τAx by τAx ¼ �dX=vAx. The
contribution τpost,AP is in model 2 determined (i) by the time τExEx
between the onset of synaptic transmission and the onset of the
somatic AMPA response, (ii) by the latency τDS from the AMPA
onset to the onset of the somatic response to the dendritic spike,
and (iii) by the time tDS,AP between the onset of the response to
a dendritic spike and the onset of the postsynaptic action potential,

τpost;AP ¼ τExEx þ τDS þ tDS;AP: [S2]

The third contribution is variable, because themembranepotential
response to a dendritic spike has a finite rise time, and the action
potentials are generated during the rise of themembrane potential
in response to a dendritic spike. Because the rise is steep and the
peak is sharp, I set tDS,AP = τrise,DS when computing τpost,AP for
model 1. Here, τrise,DS is the time between the onset of the re-
sponse to a dendritic spike and the peak in model 2. τrise,DS is
determined by the current from the dendritic spike. It depends
slightly on τDS and takes values of about 0.9 ms.
Fig. S7 shows the dependence of the oscillation frequency 1/τ in

model 1 on X, τExEx, and τDS. If not varied, the values of the pa-
rameters are X= 350 μm (vAx = 300 μm/ms), τExEx = 1 ms, τDS =
2.7 ms, and τrise,DS = 0.9 ms, in agreement with experimental data
(5, 40–42). Fig. S7 shows that the frequency decreases with in-
creasing X, predicting that a network with reduced extent (e.g.,
because of slice preparation) generates higher oscillation fre-
quencies. Additive changes in τExEx are equivalent to additive
changes in τpost,AP. The same holds for additive changes in τDS
because tDS,AP is taken as a constant. The results in the first para-
graph in this subsection and the assumed standard parameter
values yield biologically plausible ranges of 0.7–1.2 ms for τExEx
and 2.4–2.9 ms for τDS, indicated by gray dashed lines in Fig. S7 B
and C. These ranges are equivalent to the range of 4.3–4.8 ms
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estimated for τpost,AP. The frequencies generated by networks with
parameters in considerably larger ranges, e.g., a range of 0.5–1.5ms
for τExEx (40–42), still would agree with experimentally determined
frequencies of ripple oscillations.
I further derived an analytical estimate for the oscillation fre-

quency which accounts for the finite interaction window and
temporally extended pulses. I computed the temporal difference τ
between the peaks of an extended initial pulse and the response
pulse. In Poissonian approximation and in the limit of small-input
spike frequency, the response pulse and thus an equation for τ can
be explicitly derived. The oscillation frequency, approximated by
1/τ, can be computed by solving this equation numerically (blue
curves in Figs. S7–S9). An upper estimate can be derived ana-
lytically, whose inverse yields a lower estimate for the oscillation
frequency (gray curves in Figs. S7–S9).

Numerical Estimates of the Frequency Range. Model 2 generates
irregular activity and spontaneous phases of enhanced activity with
high-frequency oscillations. In the following subsection, I show that
the spontaneous generation of events and the frequency range are
robust against changes of network parameters. The parameter
dependencies are very similar to those inmodel 1. (i) Ifirst consider
the dependence on parameters that influence the oscillation fre-
quency inmodel 1, namely the edge lengthX of the square covered
by the network, the synaptic delay τExEx of couplings from excit-
atory neurons to excitatory neurons, and the latency τDS from the
AMPA onset to the onset of the somatic response to the dendritic
spike (Fig. S7). (ii) I then study the dependence on other time-
scales that might influence the oscillation frequency in model 2,
such as the window for supralinear interaction Δt and the synaptic
and postsynaptic delay τExIn of inhibitory neuron to excitatory
neuron synapses (Fig. S8). The latter determines the times at which
the inhibitory feedback reaches the excitatory neurons and would
have a strong influence if feedback inhibition was important for
oscillation frequency. Equivalently, I could have considered τInEx.
(iii) Finally, I investigate the dependence on nontemporal pa-
rameters thatmight influence the oscillation frequency bymeans of
the coupling strengths within the network (Fig. S9). I examine the
dependence on the recurrent coupling strengths between excit-
atory neurons (changed by a factor cEE), on the strengths of all
internal and external excitatory couplings (changed by a factor cE),
and on the strengths of all internal and external inhibitory cou-
plings (changed by a factor cI). For each set of parameters, six
simulations were run with randomly chosen networks and random
initial conditions, each for 20 s of simulated time. The resulting
spike trains were gathered for the excitatory and inhibitory pop-
ulation separately, and the instantaneous rates were derived in 0.5-
ms bins. The leading frequency in the range 120–700 Hz was de-
termined by the globalmaximumof the discrete power spectrum of
the rate (Hamming windowing function; the power spectrum was
smoothed using a Gaussian kernel with width σ = 11 Hz).
The dependence of the oscillation frequency on the parameters

X, τExEx, and τDS is displayed in Fig. S7. Model 1, model 2, and
the estimation in the low-frequency limit show the same func-
tional dependence on the parameters. In the numerical simu-
lations, X was varied from 100–1,000 μm in steps of 30 μm;
frequencies corresponding to larger values of X, exceeding the
estimated range for CA1, might be characteristic for high-fre-
quency oscillations in different areas. τExEx was varied from 0.4–
1.6 ms in steps of 0.05 ms. τDS was varied from 2–3.5 ms in steps
of 0.05 ms. (If not varied, the parameters are at their standard
values.) The dynamics of model 2 is robust against changes in X,
τExEx, and τDS for the entire range considered.
Fig. S8 displays the dependence of the oscillation frequency on

the parameters Δt and τExIn. The frequency prediction of model
1 is independent of these parameters, which do not occur in the
model. The prediction in the low-frequency approximation de-
pends on Δt. As Δt increases, the longer sampling time available

around the peak of the input pulse shifts the peak of the gen-
erated dendritic spikes to later times. The temporal distance
between the initial pulse and the response pulse increases, and
the frequency decreases. The prediction does not depend on the
parameter τExIn. In model 2, both parameters could, in principle,
influence the oscillation frequency. However, upon changes of Δt
within the experimentally determined range for reliable ampli-
fication, the oscillation frequency remains essentially invariant.
Here, effects such as reaching the threshold for dendritic spiking
earlier with increased Δt and the induction of earlier successive
pulses by larger pulses might balance effects such as the in-
duction of later pulse peaks by longer sampling times. For very
small Δt, no events are generated, because there are not enough
spike arrivals within the window to generate dendritic spikes.
With increasing Δt, the incidence and size of events increases.
For larger Δt, the underlying dynamics becomes pathological,
consisting of an uninterrupted series of large events, and the
leading frequency increases. This change in dynamics can be
partially prevented by adjusting the other network parameters.
The range depicted by gray dashed lines in Fig. S8A is the range
found for interaction windows that give rise to reliable supra-
linear interaction when the input strengths are not too large.
Windows for very strong inputs or unreliable amplification can
be larger (5). The indirect influence of τExIn on the oscillation
frequency is weak within the biological range of about 0.3–1.5 ms
(10, 43, 44). The dynamics are highly robust against changes in
this parameter. Δt was varied from 1.6–3.8 ms in steps of 0.1 ms.
τExIn was varied from 0 to 1.6 ms in steps of 0.1 ms.
Fig. S9 shows the dependence of the oscillation frequency on

the coupling strengths. The strengths of recurrent couplings be-
tween excitatory neurons (factor cExEx) (Fig. S9 A and D), of all
excitatory couplings (factor cEx) (Fig. S9 B and E), and of all in-
hibitory couplings (factor cIn) (Fig. S9 C and F) were varied rel-
ative to the standard values (SI Section C). The networks generate
three types of activity: low-frequency irregular activity without
events, low-frequency irregular activity with events, and continual
high-frequency activity. Low-frequency irregular activity without
events does not have a pronounced leading frequency within the
range of 120–700 Hz. Continual high-frequency activity is char-
acterized by leading frequencies higher than 200 Hz. The high-
frequency state was detected by checking whether the mean fre-
quency of each excitatory neuron was higher than 100 Hz for at
least 100 ms. The trial was stopped after the condition was met,
because this state is of minor interest for the present study, and
the entire trial was analyzed. Because the trial was broken off
quickly after the transition, the highest frequency peak detected
sometimes is the peak around 200 Hz from the transient. If the
state was realized even before the usual network equilibration
time was reached, the last 50 ms were analyzed.
Model 2 shows robust occurrence of low-frequency irregular

activity with events. Fig. S9 displays the range in which low-fre-
quency irregular activity with events reliably occurs between the
blue and red dashed lines. Beyond the blue dashed line, at least
one of the trials did not show any event; beyond the red dashed
line, at least one of the trials underwent a transition to the state
of continual high-frequency firing. The coupling strengths do not
influence the oscillation frequencies in model 1 (green straight
lines, shown for the range in which the events in model 2 oc-
curred reliably) or in the low-frequency limit (blue and gray
straight lines). The range of cExEx that gives rise to this dynamics
covers nearly the entire range where four inputs generate
a dendritic spike. (See Fig. S2 for similar results in model 1.) For
increased excitatory couplings and reduced inhibitory couplings,
there is an increase of event size, incidence, and also oscillation
frequency (probably because of indirect effects such as a de-
crease in interpulse interval with an increase in pulse size). Fig.
S9 shows a stronger effect upon changes in inhibitory coupling
(Fig. S9 C and F), highlighting the role of inhibition in shaping
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the events. Near the border to continual high-frequency firing,
the activity consists of markedly increased events.
Changes of the order of 10% in the c factors entail large differ-

ences in the total coupling strength in the network and thus have
a strong impact on the network dynamics. The activity is robust
against such changes, although features such as neural adaptation
and short-term synaptic plasticity that stabilize the network fre-
quency and could support the emergence of intermittent events
in biological neural networks are not incorporated in the model
(e.g., refs. 37 and 45). cExEx was varied from 0.9–1.3, cEx was varied
from 0.85–1.2, and cIn was varied from 0.8–1.15, each factor in
steps of 0.01.

A Model for Epilepsy? The results described in the previous sub-
section suggest two possible models for transitions to glutamate-
dependent epileptic activity. If inhibition is sufficiently strong and
excitation sufficiently weak, model 2-type networks show un-
interrupted irregular activity. Upon decrease of inhibition or
increase of excitation, they start to generate events. This dynamics
might model a transition from a healthy ground state to a state
with intermittent pathological high-frequency oscillations. The
network models can be extended to study the influence of single-
neuron dynamics such as (pathological) bursting. Events can be
localized to subnetworks (Fig. 3B), suggesting an application to
epileptic foci. Multiple foci that are out of phase might lead to
very high-frequency oscillations, as suggested in ref. 39.
Further, we can consider the state in which intermittent events

are generated as the healthy state. Upon decrease of inhibition or
increase of excitation, the events increase in size, the activity
approaches a nearly uninterrupted series of events, and the oscil-
lation frequency increases. This transitionmight explain transitions
from healthy intermittent high-frequency oscillations to epilepti-
form events. A transition to intermittent epileptiform events as
found in slices of hippocampal region CA3 (27) might arise when
properties such as short-term synaptic plasticity, bursting, and
neural adaptation are incorporated in the network model.

SI Section C: Details of Models 1 and 2
Model 1. In model 1, the subthreshold dynamics of the membrane
potential Vl of neuron l ∈ {1, . . ., N} is determined by

dVlðtÞ
dt

¼ − γlVlðtÞ þ∑
f

"
σ

�
∑

j∈MEx;lð f Þ
εlj
�
þ ∑

j∈MIn;lðf Þ
εlj

#
δðt− t f − τÞ

þ I0;l;

[S3]

where tf denotes the firing times in the network, γl = 1/τmem,l is
the inverse membrane time constant, I0,l denotes the constant
input current, τ denotes the coupling delay, δ(.) is the Dirac
δ-distribution, and εlj denotes the coupling strength from neuron
j to neuron l. The sets of indices of neurons sending at time tf

excitatory and inhibitory inputs to neuron l are denoted by
MEx,l(f) and MIn,l(f), respectively. When the neuron reaches or
exceeds the threshold Θl, it sends a spike and is reset to Vr,l.
Due to the infinitesimal rise time, the peak excitatory post-

synaptic potential (EPSP) generated by an excitatory input is
reached at the time of input arrival and equals the size of the
jump height if all other inputs are absent. σ thus maps the peak
EPSP expected by linear summation of the simultaneous inputs
to the actual peak EPSP, which can be read off or straight-
forwardly deduced from experimental literature (5, 6, 46). I set
σ(ε) = ε if ε ≤ Va, and σ(ε) = Vc if ε > Va with Va = 3.8 mV and
Vc = 10 mV (5).
Other network parameters are N = 1,000, p0 = 0.3, pEx = pIn =

0.5, τmem,l = 14 ms = 1/γl, τ = 5 ms, I0,lτmem,l = 17.8 mV, Θl =
15 mV, Vr,l = 0 mV. If not stated otherwise, coupling strengths
are εlj = 0.35 mV for an excitatory coupling and εlj = −0.35 mV

for an inhibitory coupling; the onset of supralinear amplification
thus is at 11 excitatory inputs.

Model 2. In model 2, the subthreshold dynamics of the membrane
potential Vl of neuron l is determined by

Cm;l
dVlðtÞ
dt

¼ gL;lðVrest;l −VlðtÞÞ þ gA;lðtÞðEEx −VlðtÞÞ
þ gG;lðtÞðEIn −VlðtÞÞ þ IDS;lðtÞ; [S4]

where Cm,l is the membrane capacity of the neuron, gL,l is the
resting conductance, Vrest,l is the resting potential, EEx and EIn are
the reversal potentials, and gA,l(t) and gG,l(t) are the conductances
of AMPA and GABAA synaptic populations, respectively. IDS,l(t)
models the current pulses caused by dendritic spikes. In gA,l(t) and
gG,l(t), the time course of synaptic conductances caused by single
inputs is given by the difference between two exponential func-
tions (47). Time constants are τA,1 and τG,1 for the exponential
function dominating the decay and τA,2 and τG,2 for the exponen-
tial function dominating the rise of the conductance. The peak
conductance (coupling strength) for a coupling from neuron j to
neuron l is gmax,l,j. When the membrane potential reaches the
spike threshold Θl, the neuron sends a spike to its postsynaptic
neurons and is reset to Vr,l. For dendritic spike generation, the
sum gΔt of excitatory input strengths (characterized by the cou-
pling strengths) arriving at an excitatory neuron l within the time
window Δt is considered and compared with a threshold gΘ. For
standard parameters, four inputs within Δt initiate the generation
of a dendritic spike. At a time τDS after this initiation, a current
pulse is generated in the soma. This current pulse is modeled as
the sum of three exponential functions,

IDS;lðtÞ ¼ cðgΔtÞ
�
−Aexp

�
−

t
τDS;1

�

þ Bexp
�
−

t
τDS;2

�
−Cexp

�
−

t
τDS;3

��
; [S5]

with prefactors –A, B, –C, decay time constants τDS,1, τDS,2, τDS,3,
and a dimensionless correction factor c(gΔt). The correction fac-
tor modulates the pulse strength, ensuring that σ reaches the
experimentally observed region of saturation. At very high excit-
atory inputs, the conventionally generated depolarization ex-
ceeds the level of saturation, and σ increases.
In simulations, the number of neurons used usually is N =

1,000; for the structured networks it is augmented by 500 excit-
atory neurons. The size of the subpopulation incorporating su-
pralinear dendritic interactions in Fig. 3B and Fig. S4 A and B is
900 neurons. Directed couplings from excitatory to excitatory,
from excitatory to inhibitory, from inhibitory to excitatory, and
from inhibitory to inhibitory neurons are present independently,
with probabilities pExEx, pInEx, pExIn, and pInIn, respectively. Of
particular interest for the model is pExEx. The recurrent excit-
atory connectivity in CA1 is sparse but significant. A connection
probability of 1% was estimated in a distance of 200 μm (37).
Anatomical studies, which found a local axonal plexus besides
long-range axonal branches (33, 34), and a comparison with neo-
cortex (48) suggest that it increases with proximity. I assume that
in CA1 networks local coupling dominates the generation of
ripple oscillations, whereas in native CA3 networks (Fig. S6) the
influence of global connectivity is more important (17, 21–24).
Large numbers of neurons coherently participating in SPW/Rs
(49), electrical synapses between pyramidal neurons (50, 51),
nonrandom network connectivity patterns (37), external inputs to
basal dendrites (17), and GABAA-mediated excitation (28) also
might compensate for sparse coupling. I choose a sparse con-
nectivity of pExEx = 0.08 for the comparably small, purely random
networks considered. If not stated otherwise (see the section
Structured Networks in the main text), recurrent excitatory inputs
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to the same neuron can interact nonlinearly; i.e., they are as-
sumed to arrive at the same dendrite or dendritic compartment.
The axonal delays account for the length of local collaterals and

for the spatial spread of a network of about 1,000 neurons in CA1:
The distances between neurons are drawn independently
according to the probability distribution for the distance of two
neurons on an area of 350 μm × 350 μm (17, 24, 52), and the
delays are computed assuming a spike propagation velocity of
300 μm/ms (25, 26).
The parameters of single neurons are Cm,l = 400 pF, gL,l = 25

nS, Vrest,l = Vr,l = −65 mV, EEx = 0 mV, EIn = −75 mV, Θl =
−45 mV, refractory period tref = 3 ms (17, 38) for the excitatory
population, and Cm,l = 200 pF, gL,l = 25 nS, Vrest,l = Vr,l = −65
mV, EEx = 0 mV, EIn = −75 mV, Θl = −55 mV, tref = 2 ms (8,
53) for the inhibitory population. The parameters for couplings
from excitatory-to-excitatory neurons are pExEx = 0.08 (refs. 17,
37, and 40 and comments above), τExEx = 1 ms (delay without
axonal delay; SI Text, Section B) (40–42), gmax,l,j = 2.3 nS (37,
40), τA,1 = 2.5 ms, τA,2 = 0.5 ms (54, 55); further, Δt = 2 ms
(5–7), gΘ = 8.65 nS (corresponding to the conductance gener-
ating a single EPSP of about 3.8 mV (5)), τDS = 2.7 ms (SI Text,
Section B), A = 55 nA, B = 64 nA, C = 9 nA, τDS,1 = 0.2 ms,
τDS,2 = 0.3 ms, τDS,3 = 0.7 ms, c(g) = max(1.46–0.053 g/nS, 0)
and the refractory period of the dendrite, tref,D = τDS + 2.5 ms
(estimated generation time of the dendritic spike plus refractory
period tref; no dendritic spikes are generated within this period).
For excitatory-to-inhibitory couplings, the parameters are pInEx =
0.1 (11), τInEx = 0.5 ms, gmax,l,j = 3.2 nS, τA,1 = 2 ms, τA,2 =
0.35 ms (8, 16, 56); for inhibitory-to-excitatory couplings,

pExIn = 0.1 (11), τExIn = 1 ms (43, 44), gmax,l,j = 5 nS (43, 44, 57),
τG,1 = 4 ms (44, 58), τG,2 = 0.3 ms (44, 57); and for inhibitory-to-
inhibitory couplings, pInIn = 0.02 (11), τInIn = 0.5 ms (44, 59),
gmax,l,j = 4 nS, τG,1 = 2.5 ms, τG,2 = 0.4 ms. Some of these pa-
rameters, such as pExIn, were modified from the experimentally
determined values to avoid pathological network dynamics. In
leaky integrate-and-fire neurons the parameters do not lead to
response properties as fast as found experimentally for inter-
neurons (8). In Fig. S5, I therefore assumed for interneurons
Cm,l = 100 pF, gL,l = 33 nS. The parameters of excitatory-to-
inhibitory synapses are pInEx = 0.25 (11), gmax,l,j = 2.85 nS (an
input strength of gmax,l,j = 4.2 nS generates an EPSP of 2.1 mV
from the resting potential), τA,1 = 0.7 ms, τA,2 = 0.25 ms. The
strengths of the internal inhibitory-to-excitatory synapses are
gmax,l,j = 4 nS. Further, tref = 2.5 ms was assumed for inhibitory
neurons, this value reduces multiple firing upon a single pulse
from the excitatory population (an increased strength of in-
hibitory-to-inhibitory projections has a similar effect). The spike
propagation velocity was assumed to be 350 μm/ms; the re-
maining parameters are as before.
Neurons receive external Poisson spike trains with a rate of 2.3

kHz (excitatory neurons) and a rate of 0.5 kHz (inhibitory neu-
rons), each with a ratio of 75% excitatory and 25% inhibitory
inputs. In Fig. S5, the input rates were 2.2 kHz (excitatory
neurons) and 2.2 kHz (inhibitory neurons). In Fig. S6, the input
rates were 2.9 kHz (excitatory neurons) and 0.7 kHz (inhibitory
neurons). If not stated otherwise, the strengths of the external
inputs equal the strengths of the internal inputs, but external
inputs do not contribute to the generation of dendritic spikes.
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Fig. S1. Random networks with linear coupling do not generate transiently increased activity and high-frequency oscillations. (A) A section of the dynamics of
a linearly coupled network with a synchronous pulse of size g′0 = 45 generated at time t0 = 300 ms by external stimulation. This initiates a short-lived chain of
decaying synchronous pulses. (Bottom) Spiking activity of 200 neurons; spikes within the chain are marked in red. (Middle) The network’s spike rate (bin size
1 ms). (Top) The size of synchronous spike pulses within the chain. The evolution of the pulse chain can be understood quantitatively in Markovian ap-
proximation, as illustrated by B. The chain evolution is characterized by the transition matrix (gray shading). The dots (overlapping, forming curves) indicate the
mean response pulse sizes derived numerically (green), semianalytically (red), and analytically (blue). The orange lines illustrate the evolution of the event in A.
Inset displays the dendritic modulation function σ (black line).
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Fig. S2. Short-lived, enhanced propagation of synchrony occurs in networks incorporating supralinear dendritic interactions over large parameter ranges
(A and C) in contrast to linearly coupled networks (B and D). Chains of propagating synchrony are initiated by external stimulation of synchronous groups of
g′0 = 45 neurons in supralinearly (A and C) and linearly (B and D) coupled networks with homogeneous (A and B) and inhomogeneous (C and D) coupling
strength distribution. The mean excitatory and inhibitory coupling strengths are varied. Blue areas indicate the occurrence of short-lived, enhanced propa-
gation of synchrony which is present over large parameter ranges in supralinearly coupled networks (A and C). Red indicates unstable background activity. The
white square in A and the black square in B highlight the coupling strengths used for the networks in Fig. 1 and Fig. S1, respectively.
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Fig. S3. Single-neuron dynamics during a phase of increased activity with high-frequency oscillations. A and B show the dynamics of excitatory neurons, and C
shows the dynamics of an inhibitory neuron. From top to bottom, the rows display the spike rate of the associated neuron population (number of spikes per
0.5-ms bin), the conductance of the inhibitory synapses at the neuron, the conductance of the excitatory synapses at the neuron, and the neuron’s membrane
potential.
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Fig. S4. Spiking dynamics in structured networks. A and B show the spiking dynamics of a network with a subpopulation of excitatory neurons whose re-
current connections allow supralinear dendritic interactions. A shows the rate (Upper) and the spiking activity of a part (Lower) of the inhibitory population.
B shows the rate (Upper) and the spiking activity of a part (Lower) of the excitatory population. C–F show the spiking dynamics of a network with a sequence of
groups of excitatory neurons whose connections from one group to the next allow supralinear dendritic interactions. C shows the spiking activity of a part of
the inhibitory population (Upper) and of the excitatory population (Lower). D–F show the spiking activity (Lower) and the rate (Upper) of the excitatory
population during events.
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Fig. S5. Phase relationship between the excitatory and the inhibitory neuron populations in a model incorporating fast interneurons during events of in-
creased activity with high-frequency oscillations. A displays the rates of the excitatory population (Upper; blue) and of the inhibitory population (Lower; red)
during a single event. B shows the average rate taken over all events in a trial. C shows the autocorrelation of the rate of the excitatory neuron population, and
D shows the cross-correlation of the rates of the excitatory and the inhibitory neuron populations. E displays the averaged phase lag of the inhibitory pop-
ulation rate with respect to the excitatory population rate during events.
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Fig. S6. Long and broadly distributed axonal conduction delays lead to smoothing of oscillations and to a decrease in the oscillation frequency. A shows the
rate (bin size 0.5 ms) of the excitatory neuron population during two single events (Upper and Lower) for a network with long and broadly distributed delays.
B shows the power spectrum of the rate of the excitatory population. For comparison, C and D show the corresponding results for a network with reduced
mean and width of the delay distribution.
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Fig. S7. The leading frequency of intermittent high-frequency oscillations is about 200 Hz even if the network parameters are varied over broad ranges. The
figure shows the leading frequency dependent on the spatial extent of the network X (A and D), dependent on the synaptic (and dendritic) delay τExEx (B and
E), and dependent on the time τDS from the onset of the somatic AMPA response to the somatic response to the dendritic spike (C and F). The green curves
show the frequency dependence in model 1. The black dots show numerical results for model 2 for the excitatory (A–C) and for the inhibitory (D–F) population.
Error bars indicate the SD of the distribution. The blue and gray curves display results from an analytical low-frequency approximation (SI Text). Biologically
plausible parameter ranges for region CA1 are highlighted by light gray dashed lines.
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Fig. S8. The dependence of the oscillation frequency on the window for supralinear interaction and on the timing of inhibitory feedback is weak. The figure
displays the leading oscillation frequencies of the excitatory population dependent on (A) the window for supralinear interaction Δt and on (B) the synaptic
and postsynaptic delay τExIn from inhibitory to excitatory neurons. The frequency scale is enlarged compared with Fig. S7. Gray dashed lines indicate the
experimentally determined range of Δt for reliable amplification (5). In model 2, the frequency depends only weakly on the parameters (black dots in A; error
bars indicate size of the SD of the distribution), whereas the parameters do not occur in model 1 (green straight lines). The blue and gray curves show the
results from a low-frequency approximation. (See SI Text for further details.)
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Fig. S9. The dependence of the oscillation frequency on the coupling strengths is weak. The figure displays the leading oscillation frequencies of the ex-
citatory population dependent on (A and D) the factor cExEx, scaling the strengths of couplings within the excitatory neuron population, (B and E) the factor cEx,
scaling all excitatory couplings (internal and external), and (C and F) the factor cIn, scaling all inhibitory couplings (internal and external). Intermittent increases
of activity with high-frequency oscillations are reliably present for the range of factors within the red and blue dashed lines; close-ups are shown in D–F. Within
this range, the predictions of model 1 (green straight lines) and of model 2 (black dots; error bars indicate SD of the distribution) agree well. Events in networks
near the border of pathological high-frequency activity are markedly increased. The events occur as a nearly continuous chain. (See SI Text for further details.)
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