# **Supporting Information**

## Foster et al. 10.1073/pnas.0912671107

#### SI Text

**Outline of Supporting Information.** The *SI Text* contains material of two sorts. Figs. S1 and S2 give further evidence for the classificatory ability of our measures. Tables S1, S2, and S3 provide information as follows: collect the basic information about all networks analyzed in the paper (Table S1), give numerical values and error estimates for all quantities measured in the directed assortativity analysis (Table S2), and elaborate the discussion of the cascade and niche models by showing the standard deviation for ensembles of model networks of each type (Table S3). We provide below an outline of the *SI Text*, briefly describing each component in order with a shortened version of the figure and table legends.

- Fig. S1 shows the similarities in Assortativity Significance Profile (ASP) between several real-world networks, as measured by the dot product between their ASPs,  $R_{ij} = \sum_{\alpha,\beta} ASP_i(\alpha,\beta) \times ASP_i(\alpha,\beta)$ .
- Fig. S2 is constructed as in Fig. S1, but omits the ASP(*out*, *in*) from the dot product. The classes are more clearly visible here.
- Table S1 shows network properties and sources. We show the

1. Newman MEJ (2003) Mixing patterns in networks. Phys Rev E 67:026126.

class of network, the number of nodes N, the number of edges E, the average out degree  $\langle k_{out} \rangle$ , whether or not the network has self-edges, the Pearson correlation between the in- and out-degrees of nodes in the network  $r_{auto}$ , and the source of the network. A list of sources follows the table for ease of reference.

- Table S2 shows directed assortativity results. For each network and each of the four possible pairs  $(\alpha, \beta)$  we show the Pearson correlation  $r(\alpha, \beta)$ , the error  $\sigma_r^{\text{rw}}$  in this quantity as estimated by jackknife (see ref. 1), the average Pearson correlation of the random ensemble  $\langle r_{\text{rand}} \rangle$ , the error of this average  $\sigma_r^{\text{rand}}$ (*Materials and Methods*),  $Z(\alpha, \beta)$ , and ASP $(\alpha, \beta)$ .
- Table S3 shows standard deviations in food-web models. We show the standard deviations in  $r(\alpha, \beta)$  for 500 instances per real-world network of the cascade and niche model. Instances are constructed according to the procedure described in *Materials and Methods*, following ref. 2; note the large standard deviations of the niche model.
- Built using Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183.



**Fig. S1.** Similarities between several real-world networks in the ASP measure. Each pair of real-world networks (i, j) is assigned a correlation by the dot product between their ASPs,  $R_{ij} = \sum_{\alpha,\beta} ASP_i(\alpha, \beta) \times ASP_j(\alpha, \beta)$ . As before,  $\alpha, \beta\{in, out\}$  index the degree types. Because the ASPs are normalized,  $R_{ij}$  ranges from -1 to 1, with 1 indicating highly correlated ASPs. Note that all three classes of network are clearly visible in the heat map, with some overlap between the online networks and the word-adjacency networks. In Fig. S2 we identify the source of this overlap.



Fig. S2. This is constructed as in Fig. S1, but it omits the ASP(*out*, *in*) from the dot product. The classes are much more clearly visible, which suggests that the additional measures discussed in this paper are of greater discriminatory power than the typical assortativity measure of ref. 1. Note, however, that the political blog network is not grouped with the other online networks; this is consistent with its lacking the (*in*, *out*) Z assortativity of the World Wide Web (WWW) and Wikipedia.

Table S1. Network properties and sources

| Network             | Class          | Ν         | Ε          | $\langle k_{\sf out}  angle$ | Self-edges | <i>r</i> <sub>auto</sub> | Source |
|---------------------|----------------|-----------|------------|------------------------------|------------|--------------------------|--------|
| Leadership          | Social         | 32        | 96         | 3.000                        | No         | 0.053                    | (3)    |
| Prison              | Social         | 67        | 182        | 2.716                        | No         | 0.201                    | (3)    |
| WWW                 | Online         | 325,729   | 1,497,135  | 4.596                        | Yes        | 0.211                    | (3)    |
| Wikipedia           | Online         | 1,598,583 | 19,753,078 | 12.357                       | Yes        | 0.203                    | (4)    |
| Politcal blogs      | Online         | 1,224     | 19,090     | 15.597                       | Yes        | 0.377                    | (5)    |
| WWW model 1         | Online         | 325,729   | 1,446,887  | 4.442                        | Yes        | 0.526                    | (6)    |
| WWW model 2         | Online         | 325,729   | 1,448,691  | 4.448                        | Yes        | 0.565                    | (6)    |
| WWW model 3         | Online         | 325,729   | 1,428,052  | 4.384                        | Yes        | 0.391                    | (6)    |
| Coachella           | Food web       | 29        | 262        | 9.034                        | Yes        | -0.361                   | (7)    |
| Little Rock         | Food web       | 95        | 1,080      | 11.368                       | Yes        | -0.242                   | (8)    |
| St. Marks           | Food web       | 48        | 221        | 4.604                        | Yes        | -0.227                   | (9)    |
| St. Martin          | Food web       | 42        | 205        | 4.881                        | No         | -0.368                   | (10)   |
| Ythan               | Food web       | 82        | 395        | 4.817                        | Yes        | -0.055                   | (11)   |
| Coachella niche     | Food web       | 29        | 259        | 8.931                        | Yes        | -0.408                   | (2)    |
| Little Rock niche   | Food web       | 95        | 1,056      | 11.116                       | Yes        | -0.284                   | (2)    |
| St. Marks niche     | Food web       | 48        | 216        | 4.500                        | Yes        | -0.258                   | (2)    |
| St. Martin niche    | Food web       | 41        | 208        | 5.073                        | No         | -0.398                   | (2)    |
| Ythan niche         | Food web       | 82        | 386        | 4.707                        | Yes        | -0.389                   | (2)    |
| Coachella Cascade   | Food web       | 29        | 267        | 9.207                        | No         | -0.907                   | (2)    |
| Little Rock Cascade | Food web       | 95        | 1,098      | 11.558                       | No         | -0.859                   | (2)    |
| St. Marks Cascade   | Food web       | 48        | 223        | 4.646                        | No         | -0.793                   | (2)    |
| St. Martin Cascade  | Food web       | 42        | 205        | 4.881                        | No         | -0.662                   | (2)    |
| Ythan Cascade       | Food web       | 82        | 384        | 4.683                        | No         | -0.702                   | (2)    |
| Spanish             | Word adjacency | 11,586    | 45,129     | 3.895                        | No         | 0.913                    | (3)    |
| Japanese            | Word adjacency | 2,704     | 8,300      | 3.070                        | No         | 0.927                    | (3)    |
| French              | Word adjacency | 8,325     | 24,295     | 2.918                        | No         | 0.905                    | (3)    |
| English             | Word adjacency | 8,525     | 74,921     | 8.788                        | Yes        | 0.876                    | (12)   |
| Scrambled           | Word adjacency | 8,525     | 11,8161    | 13.861                       | Yes        | 0.999                    | (12)   |
| Bipartite           | Word adjacency | 746       | 1,290      | 1.729                        | No         | 0.968                    | (3)    |

We show the class of network, the number of nodes *N*, the number of edges *E*, the average out degree  $\langle k_{out} \rangle$ , whether or not the network has self-edges, the Pearson correlation between the in- and out-degrees of nodes in the network  $r_{auto}$ , and the source (see the list below). Note that after reconstructing the adjacency matrix by hand from refs. 7–11, we performed a trophic aggregation on all food webs, meaning that if two species had identical interactions, we combined them into one node. Further, all parasites were removed from the Ythan food web.

3. Milo R, et al. (2004) Superfamilies of evolved and designed networks. Science 303:1538–1542. Available at http://www.weizmann.ac.il/mcb/UriAlon/groupNetworksData.html.

4. Gleich D (2009) Available at http://www.cise.ufl.edu/research/sparse/matrices/Gleich/index.html.

5. Adamic LA, Glance N (2005) The political blogosphere and the 2004 US Election, Proceedings of the 3rd International Workshop on Link Discovery (ACM, Chicago), pp 36–44.

6. Built using Krapivsky PL, Rodgers GJ, Redner S (2001) Degree distributions of growing networks. Phys Rev Lett 86:5401.

Polis GA (1991) Complex trophic interactions in deserts: An empirical critique of food-web theory. Am Nat 183:123–155.
 Martinez ND (1991) Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol Monogr 61:367–392.

Martinez ND (1991) Artifacts of attributes: Effects of resolution of the Entre Nock Ease food web. Econ Monogr 01:307–352.
 Christian RR, Luczkovich JJ (1999) Organizing and understanding a winter's seagrass foodweb network through effective trophic levels. Ecol Model 117:99–124.

 Constant RI, Edeckover JS (1995) organizing and understanding a winter steagrass rooweb network undegn enective 10. Goldwasser L, Roughgarden J (1993) Construction and analysis of a large Caribbean food web. *Ecology* 74:1216–1233.

11. Huxham M, Beaney S, Raffaeli D (1996) Do parasites reduce the chances of triangulation in a real food web? Oikos 76:284–300.

12. Darwin C (1859) On the Origin of Species, 6th Ed. Available at http://www.gutenberg.org/etext/2009.

### Table S2. Directed assortativity results

| Network           | $(\pmb{lpha},\pmb{eta})$ | $r(\alpha, \beta)$ | $\sigma_r^{\sf rw}$ | $\langle r_{rand}  angle$ | $\sigma_r^{rand}$        | Z(lpha,eta)   | $ASP(\alpha,\beta)$ |
|-------------------|--------------------------|--------------------|---------------------|---------------------------|--------------------------|---------------|---------------------|
| Leadership        | (out, in)                | -0.157             | 0.123               | -0.030                    | 0.0015                   | -1.419        | -0.391              |
| ·                 | (in, out)                | 0.214              | 0.107               | -0.015                    | 0.0014                   | 2.344         | 0.646               |
|                   | (out, out)               | -0.199             | 0.010               | -0.036                    | 0.0013                   | -1.844        | -0.508              |
|                   | (in, in)                 | -0.083             | 0.089               | -0.045                    | 0.0013                   | 1.504         | 0.415               |
| Prison            | (out, in)                | 0.129              | 0.072               | -0.023                    | 0.0010                   | 2.152         | 0.492               |
|                   | (in, out)                | 0.134              | 0.067               | -0.012                    | 0.0016                   | 2.013         | 0.460               |
|                   | (out, out)               | 0.206              | 0.073               | -0.021                    | 0.0016                   | 3.214         | 0.734               |
|                   | (în, în)                 | -0.053             | 0.070               | -0.027                    | 0.0016                   | -0.390        | -0.089              |
| WWW               | (out, in)                | -0.062             | 0.0001              | -0.039                    | $3.0 \times 10^{-6}$     | -144.927      | -0.388              |
|                   | (In, out)                | 0.257              | 0.0002              | 0.000                     | 1.8 × 10 <sup>-5</sup>   | 343.609       | 0.921               |
|                   | (out, out)               | -0.014             | 0.0001              | -0.007                    | $1.7 \times 10^{-5}$     | - 10.001      | -0.029              |
| Wikinedia         | (11, 11)                 | -0.023             | 0.0001              | -0.021                    | $1.5 \times 10^{-6}$     | -3.230        | -0.009              |
| Wikipedia         | (in out)                 | 0.070              | 0.0002              | -0.005                    | $2.0 \times 10^{-5}$     | 125 057       | 0.290               |
|                   | (out, out)               | -0.032             | 0.0006              | -0.024                    | $3.0 \times 10^{-5}$     | -48.970       | -0.117              |
|                   | (in, in)                 | -0.014             | 0.0008              | -0.009                    | $6.0 \times 10^{-6}$     | -45.744       | -0.110              |
| Political blogs   | (out, in)                | -0.230             | 0.005               | -0.133                    | $4.5 \times 10^{-5}$     | -25.689       | -0.965              |
| 5                 | (in, out)                | -0.023             | 0.006               | -0.020                    | 5.8 × 10 <sup>-5</sup>   | -0.609        | -0.023              |
|                   | (out, out)               | -0.0515            | 0.006               | -0.041                    | $6.5 \times 10^{-5}$     | -2.285        | -0.086              |
|                   | (in, in)                 | -0.094             | 0.006               | -0.064                    | $7.6 \times 10^{-5}$     | -6.522        | -0.245              |
| WWW model 1       | (out, in)                | -0.040             | 0.0001              | -0.043                    | $4.5 \times 10^{-7}$     | 77.186        | 0.711               |
|                   | (in, out)                | -0.026             | 0.0003              | -0.029                    | 5.0 × 10 <sup>-6</sup>   | 27.230        | 0.251               |
|                   | (out, out)               | -0.033             | 0.0002              | -0.037                    | 8.0 × 10 <sup>-6</sup>   | 61.734        | 0.570               |
| 144444            | (in, in)                 | -0.031             | 0.0002              | -0.033                    | $7.5 \times 10^{-7}$     | 35.5/4        | 0.328               |
| www.ww.model 2    | (out, In)                | -0.050             | 0.0002              | -0.054                    | 6.5 × 10 <sup>7</sup>    | 77.496        | 0.687               |
|                   | (III, OUL)               | -0.052             | 0.0003              | -0.056                    | $4.5 \times 10^{-5}$     | 29.560        | 0.202               |
|                   | (in, in)                 | -0.031             | 0.0003              | -0.000                    | $1.0 \times 10^{-7}$     | /0 795        | 0.373               |
| WWW model 3       | (out in)                 | -0.036             | 0.0002              | -0.037                    | $1.9 \times 10^{-7}$     | 73 870        | 0.736               |
|                   | (in, out)                | -0.020             | 0.0003              | -0.021                    | $1.5 \times 10^{-6}$     | 19.573        | 0.195               |
|                   | (out, out)               | -0.031             | 0.0002              | -0.033                    | $4.5 \times 10^{-6}$     | 52.737        | 0.525               |
|                   | (in, in)                 | -0.023             | 0.0001              | -0.024                    | $1.4 \times 10^{-7}$     | 38.111        | 0.380               |
| Coachella         | (out, in)                | -0.143             | 0.068               | -0.229                    | $5.3 	imes 10^{-4}$      | 2.642         | 0.357               |
|                   | (in, out)                | -0.170             | 0.059               | -0.037                    | $4.7 \times 10^{-4}$     | -3.134        | -0.424              |
|                   | (out, out)               | 0.148              | 0.063               | 0.096                     | $4.2 \times 10^{-4}$     | 1.459         | 0.197               |
|                   | (in, in)                 | 0.280              | 0.058               | 0.055                     | 6.2 × 10 <sup>-4</sup>   | 5.971         | 0.808               |
| Little Rock       | (out, in)                | -0.301             | 0.030               | -0.197                    | $2.3 \times 10^{-4}$     | -5.902        | -0.420              |
|                   | (In, out)                | -0.221             | 0.025               | -0.029                    | $2.6 \times 10^{-4}$     | -7.464        | -0.531              |
|                   | (in in)                  | 0.517              | 0.029               | 0.098                     | $2.0 \times 10^{-4}$     | 9.470         | 0.072               |
| St Marks          | (nut in)                 | -0.027             | 0.025               | -0.069                    | $4.3 \times 10^{-4}$     | 0 735         | 0.237               |
| St. Marks         | (in, out)                | -0.344             | 0.054               | -0.011                    | $6.6 \times 10^{-4}$     | -5.390        | -0.595              |
|                   | (out, out)               | 0.302              | 0.061               | -0.010                    | $6.7 \times 10^{-4}$     | 5.280         | 0.583               |
|                   | (in, in)                 | 0.298              | 0.061               | 0.004                     | 0.0011                   | 4.964         | 0.548               |
| St. Martin        | (out, in)                | -0.204             | 0.068               | -0.127                    | $7.2 \times 10^{-4}$     | -1.476        | -0.204              |
|                   | (in, out)                | -0.392             | 0.042               | -0.020                    | $9.2 	imes 10^{-4}$      | -5.790        | -0.800              |
|                   | (out, out)               | 0.168              | 0.069               | 0.017                     | 9.2 × 10 <sup>-4</sup>   | 2.492         | 0.344               |
|                   | (in, in)                 | 0.178              | 0.081               | 0.014                     | 8.5 × 10 <sup>-4</sup>   | 3.244         | 0.448               |
| Ythan             | (out, in)                | -0.179             | 0.047               | -0.238                    | 3.0 × 10 <sup>-4</sup>   | -2.308        | -0.493              |
|                   | (in, out)                | -0.338             | 0.033               | -0.014                    | $6.1 \times 10^{-4}$     | -3.424        | -0.732              |
|                   | (out, out)               | 0.348              | 0.052               | -0.062                    | $6.1 \times 10^{-4}$     | 1./59         | 0.376               |
| Conchalla Nicha   | (IN, IN)                 | 0.288              | 0.050               | -0.017                    | $2.9 \times 10^{-4}$     | 1.321         | 0.282               |
|                   | (out, m)                 | -0.145             | 0.003               | -0.195                    | $7.4 \times 10^{-4}$     | -6 383        | _0.043              |
|                   | (out out)                | 0 148              | 0.049               | 0.085                     | $5.0 \times 10^{-4}$     | 5 866         | 0.573               |
|                   | (in. in)                 | 0.280              | 0.061               | 0.031                     | $6.6 \times 10^{-4}$     | 6.969         | 0.626               |
| Little Rock Niche | (out, in)                | -0.206             | 0.030               | -0.073                    | $4.2 \times 10^{-4}$     | -5.197        | -0.288              |
|                   | (in, out)                | -0.263             | 0.027               | -0.006                    | $3.4 \times 10^{-4}$     | -9.467        | -0.524              |
|                   | (out, out)               | 0.337              | 0.027               | 0.013                     | $3.3 \times 10^{-4}$     | 12.131        | 0.671               |
|                   | (in, in)                 | 0.198              | 0.030               | 0.001                     | $3.3 \times 10^{-4}$     | 7.914         | 0.438               |
| St. Marks Niche   | (out, in)                | -0.221             | 0.059               | -0.113                    | 0.00124                  | -1.964        | -0.323              |
|                   | (in, out)                | -0.206             | 0.055               | -0.013                    | 0.00105                  | -3.099        | -0.509              |
|                   | (out, out)               | 0.282              | 0.061               | 0.046                     | 8.6 × 10 <sup>-4</sup>   | 4.014         | 0.660               |
| Ct. Mantin Mill   | (in, in)                 | 0.163              | 0.066               | 0.004                     | 8.5 × 10 <sup>-4</sup>   | 2.730         | 0.449               |
| St. Martin Niche  | (out, in)                | -0.230             | 0.066               | -0.181                    | $4.4 \times 10^{-4}$     | -1.230        | -0.225              |
|                   | (m, out)                 | -0.221             | 0.043               | 0.038<br>0 000            | 5.0 × 10 ·<br>5.2 v 10-4 | -2.920        | -0.536              |
|                   | (in in)                  | 0.312              | 0.002               | 0.065                     | $9.3 \times 10^{-4}$     | 2.51<br>2.106 | 0.710               |
| Ythan Niche       | (out in)                 | -0.193             | 0.058               | -0.074                    | $5.7 \times 10^{-4}$     | -2.100        | _0.380              |
|                   | (in, out)                | -0.243             | 0.037               | -0.018                    | $5.2 \times 10^{-4}$     | -4.728        | -0.616              |
|                   | (out, out)               | 0.252              | 0.046               | 0.043                     | $5.2 \times 10^{-4}$     | 4.414         | 0.585               |
|                   |                          |                    | -                   | -                         |                          |               |                     |

PNAS PNAS

| Network             | $(\alpha, \beta)$ | $r(\alpha, \beta)$ | $\sigma_r^{\rm rw}$ | $\langle r_{rand} \rangle$ | $\sigma_r^{rand}$      | Z(lpha,eta) | $ASP(\alpha,\beta)$ |
|---------------------|-------------------|--------------------|---------------------|----------------------------|------------------------|-------------|---------------------|
|                     | (in, in)          | 0.158              | 0.060               | 0.020                      | 5.7 × 10 <sup>-4</sup> | 3.034       | 0.402               |
| Coachella Cascade   | (out, in)         | -0.415             | 0.050               | -0.229                     | $4.7 	imes 10^{-4}$    | -5.713      | -0.453              |
|                     | (in, out)         | -0.458             | 0.038               | -0.037                     | $2.1 	imes 10^{-4}$    | -6.891      | -0.547              |
|                     | (out, out)        | 0.436              | 0.048               | 0.096                      | $3.2 \times 10^{-4}$   | 6.383       | 0.506               |
|                     | (in, in)          | 0.433              | 0.043               | 0.055                      | $3.8 	imes 10^{-4}$    | 6.173       | 0.490               |
| Little Rock Cascade | (out, in)         | -0.363             | 0.027               | -0.051                     | $4.1 	imes 10^{-4}$    | -11.977     | -0.465              |
|                     | (in, out)         | -0.417             | 0.020               | -0.034                     | $2.1 	imes 10^{-4}$    | -13.735     | -0.533              |
|                     | (out, out)        | 0.389              | 0.025               | 0.041                      | $2.0 	imes 10^{-4}$    | 12.756      | 0.495               |
|                     | (in, in)          | 0.391              | 0.024               | 0.039                      | $3.8 	imes 10^{-4}$    | 13.033      | 0.506               |
| St. Marks Cascade   | (out, in)         | -0.264             | 0.062               | -0.040                     | $9.2 	imes 10^{-4}$    | -3.627      | -0.413              |
|                     | (in, out)         | -0.353             | 0.043               | -0.020                     | $6.7 	imes 10^{-4}$    | -5.146      | -0.586              |
|                     | (out, out)        | 0.294              | 0.055               | 0.025                      | $6.7 	imes 10^{-4}$    | 4.260       | 0.485               |
|                     | (in, in)          | 0.305              | 0.053               | 0.024                      | $7.5 	imes 10^{-4}$    | 4.398       | 0.501               |
| St. Martin Cascade  | (out, in)         | -0.289             | 0.066               | -0.056                     | $9.2 	imes 10^{-4}$    | -3.821      | -0.424              |
| st. Martin Cascade  | (in, out)         | -0.371             | 0.056               | -0.021                     | $7.7 \times 10^{-4}$   | -5.293      | -0.587              |
|                     | (out, out)        | 0.310              | 0.055               | 0.022                      | $7.7 \times 10^{-4}$   | 4.536       | 0.503               |
|                     | (in, in)          | 0.297              | 0.065               | 0.026                      | 0.00145                | 4.265       | 0.473               |
| Ythan Cascade       | (out, in)         | -0.257             | 0.046               | -0.023                     | $8.7 	imes 10^{-4}$    | -4.873      | -0.431              |
|                     | (in, out)         | -0.346             | 0.041               | -0.011                     | $6.5 	imes 10^{-4}$    | -6.703      | -0.592              |
|                     | (out, out)        | 0.275              | 0.044               | 0.012                      | $6.5 	imes 10^{-4}$    | 5.401       | 0.477               |
|                     | (in, in)          | 0.283              | 0.045               | 0.010                      | $9.3 	imes 10^{-4}$    | 5.495       | 0.486               |
| Spanish             | (out, in)         | -0.280             | 0.002               | -0.269                     | $3.8 \times 10^{-6}$   | -75.777     | -0.599              |
| Spanish             | (in, out)         | -0.256             | 0.002               | -0.246                     | $4.7 	imes 10^{-6}$    | -49.451     | -0.391              |
|                     | (out, out)        | -0.282             | 0.002               | -0.269                     | $2.4 \times 10^{-5}$   | -65.006     | -0.514              |
|                     | (in, in)          | -0.254             | 0.002               | -0.246                     | 3.8 × 10 <sup>−6</sup> | -59.801     | -0.473              |
| Japanese            | (out, in)         | -0.266             | 0.004               | -0.230                     | 1.9 × 10 <sup>−5</sup> | -29.772     | -0.634              |
|                     | (in, out)         | -0.231             | 0.004               | -0.208                     | 2.8 × 10 <sup>-5</sup> | -17.468     | -0.372              |
|                     | (out, out)        | -0.240             | 0.004               | -0.213                     | 2.9 × 10 <sup>−5</sup> | -22.025     | -0.469              |
|                     | (in, in)          | -0.255             | 0.004               | -0.224                     | $3.0 	imes 10^{-5}$    | -23.062     | -0.491              |
| French              | (out, in)         | -0.240             | 0.002               | -0.210                     | $6.2 	imes 10^{-6}$    | -75.777     | -0.599              |
|                     | (in, out)         | -0.204             | 0.002               | -0.183                     | 1.3 × 10 <sup>−5</sup> | -49.451     | -0.391              |
|                     | (out, out)        | -0.253             | 0.002               | -0.220                     | 2.8 × 10 <sup>-5</sup> | -65.006     | -0.514              |
|                     | (in, in)          | -0.194             | 0.002               | -0.174                     | $4.8 	imes 10^{-6}$    | -59.801     | -0.473              |
| English             | (out, in)         | -0.226             | 0.001               | -0.214                     | 3.3 × 10 <sup>−6</sup> | -69.192     | -0.671              |
| -                   | (in, out)         | -0.203             | 0.001               | -0.195                     | 5.7 × 10 <sup>-6</sup> | -32.554     | -0.316              |
|                     | (out, out)        | -0.193             | 0.001               | -0.185                     | 9.7 × 10 <sup>−6</sup> | -47.468     | -0.460              |
|                     | (in, in)          | -0.238             | 0.001               | -0.227                     | 3.9 × 10 <sup>−6</sup> | -50.332     | -0.488              |
| Scrambled           | (out, in)         | -0.227             | 0.001               | -0.235                     | $4.3 	imes 10^{-6}$    | 43.805      | 0.496               |
|                     | (in, out)         | -0.227             | 0.001               | -0.235                     | $5.3 	imes 10^{-6}$    | 44.498      | 0.504               |
|                     | (out, out)        | -0.228             | 0.001               | -0.235                     | $5.4 	imes 10^{-6}$    | 44.105      | 0.499               |
|                     | (in, in)          | -0.227             | 0.001               | -0.234                     | $4.6 	imes 10^{-6}$    | 44.207      | 0.501               |
| Bipartite           | (out, in)         | -0.974             | 0.001               | -0.715                     | $4.7 \times 10^{-5}$   | -59.537     | -0.511              |
|                     | (in, out)         | -0.973             | 0.001               | -0.705                     | 9.6 × 10 <sup>-5</sup> | -56.944     | -0.488              |
|                     | (out, out)        | -0.974             | 0.001               | -0.711                     | 9.6 × 10 <sup>-5</sup> | -58.222     | -0.499              |
|                     | (in, in)          | -0.973             | 0.001               | -0.710                     | $5.3 	imes 10^{-6}$    | -58.514     | -0.502              |

For each network and each of the four possible pairs  $(\alpha, \beta)$ , we show the Pearson correlation  $r(\alpha, \beta)$ , the error  $\sigma_r^{rw}$  in this quantity as estimated by jackknife (see ref. 1), the average Pearson correlation of the random ensemble  $\langle r_{rand} \rangle$ , the error of this average  $\sigma_r^{rand}$  (*Materials and Methods*),  $Z(\alpha, \beta)$ , and ASP $(\alpha, \beta)$ .

PNAS PNAS

#### Table S3. Standard deviations in food-web models

| Network     | $(\alpha, \beta)$ | $\sigma_r^{cascade}$ | $\sigma_r^{ m niche}$ |
|-------------|-------------------|----------------------|-----------------------|
| Coachella   | (out, in)         | 0.0268               | 0.1501                |
|             | (in, out)         | 0.0235               | 0.0826                |
|             | (out, out)        | 0.0289               | 0.1033                |
|             | (in, in)          | 0.0262               | 0.0739                |
| Little Rock | (out, in)         | 0.0178               | 0.1314                |
|             | (in, out)         | 0.0127               | 0.0354                |
|             | (out, out)        | 0.0173               | 0.0777                |
|             | (in, in)          | 0.0166               | 0.0642                |
| St. Marks   | (out, in)         | 0.0583               | 0.1849                |
|             | (in, out)         | 0.0455               | 0.0729                |
|             | (out, out)        | 0.0592               | 0.1341                |
|             | (in, in)          | 0.0592               | 0.1046                |
| St. Martin  | (out, in)         | 0.0575               | 0.1841                |
|             | (in, out)         | 0.0436               | 0.0759                |
|             | (out, out)        | 0.0603               | 0.1276                |
|             | (in, in)          | 0.0582               | 0.1038                |
| Ythan       | (out, in)         | 0.0486               | 0.1636                |
|             | (in, out)         | 0.0342               | 0.0566                |
|             | (out, out)        | 0.0463               | 0.1116                |
|             | (in, in)          | 0.0467               | 0.0954                |

We show the standard deviations in  $r(\alpha, \beta)$  for 500 instances per real-world network of the cascade and niche model. Instances are constructed according to the procedure described in the *Materials and Methods*, following ref. 2; note the large standard deviations of the niche model.

PNAS PNAS