Supporting Information

Liénard et al. 10.1073/pnas.1000823107

SI Materials and Methods

Gas Chromatography-Mass Spectrometry Analyses. Before analysis, samples were concentrated under a gentle flow of pure nitrogen to a final volume of 50 μ L. One microliter was analyzed on a gas chromatograph (Hewlett Packard HP 6890 GC system, Agilent Technologies) equipped with an HP-5MS capillary column (30 m × 250 μ m; d_f = 0.25 μ m; carrier gas: helium; velocity: 30cm/s), an automatic injector (HP-7683), and coupled to a mass selective detector (HP 5973). The GC-MS was operated in electron impact mode (70 eV) and the injector was configured in splitless mode and maintained at 280 °C. The oven temperature was held at 40 °C for

2 min and rose at a rate of 8 °C/min up to 230 °C, 10 °C/min up to 280 °C, held for 10 min. For the time-course experiment and the incubation with FAME precursor mixtures, the gas chromatograph (Hewlett Packard HP 5890II GC system) was coupled to a mass selective detector (HP 5972) and equipped with a polar INNOWax column (100% polyethylene glycol, 30 m × 0.25 mm × 0.25 μ m, Agilent Technologies). The GC-MS was operated in electron impact mode (70 eV) and the injector was configured in splitless mode at 220 °C with helium used as carrier gas (velocity: 30 cm/s). The oven temperature was maintained for 2 min at 50 °C and rose at a rate of 10 °C/min up to 220 °C, held for 20 min.

Fig. S1. Pheromone gland (PG) specific tissue expression of the *Yponomeuta padellus* (Y. pa), *Yponomeuta rorellus* (Y. ro), and *Yponomeuta evonymellus* (Y. ev) pgFAR mRNAs monitored by reverse-transcriptase PCR. RNAs were isolated from 15 female PGs and abdominal tissue (minus PG) (Abd) of each species and DNase-purified. Reactions were performed using 50 ng RNA under conditions as described in *Materials and Methods*. Amplicon sizes: pgFAR, 320 bp; 16s RNA, 397 bp.

Fig. 52. GC-MS analyses of fatty-alcohol extracts from yeast transformed with pYES2.1-*Yev*-pgFAR, similarly as described in Fig. 6. In each panel, the upper chromatogram traces represent the total ion currents (TIC) from transformed yeast supplemented with 500 μ M of (A) E12-14:Me, (B) Z12-14:Me, and (C) Z9-16: Me. The lower chromatogram traces represent the TICs of (A) the E12-14 and (B) the Z12-14:alcohol references (RT = retention time,) and (C) the pYES2.1 empty vector supplemented with Z9-16:Me. Asterisks (*) indicate the internal standard (150 ng Z11-13:OH). The *y* axes represent the relative abundance.

Fig. 53. Average yeast/medium ratio of fatty-alcohol extracts obtained at different time points over a 24-h experimental period ($n_{time_point} = 3$). The transformed yeasts expressing the pYES2.1-*Ypa*-pgFAR were supplemented with a mixture of Z11-16:Me (50 μ M) and Z- and E11-14:Me (5 μ M each). The yeast pellet and the incubation medium were extracted separately with 1 mL *n*-hexane spiked with 150 ng of Z11-13:OH as an internal standard and analyzed by GC-MS as described in *SI Materials and Methods*. The 14:OH and 16:OH are concomitantly converted from the inherent yeast fatty-acyl pool (Fig. 52C). There is no correlation between the yeast/medium ratio and the incubation time (Spearman's rank correlation; $P \ge 0.09$ for all alcohol products considered; P = 0.12). In other words, the composition in fatty alcohols extracted from the yeast cells and those recovered from the incubation medium is identical, independent of incubation times, and the yeast fatty-alcohol content accurately reflects the total fatty-alcohol production.

Fig. 54. Fatty-alcohol products extracted after a 24-h incubation period from the *InvSc1* yeast expressing the pYES2-1-*Ypa*-pgFAR supplemented with a mixture of E11-14:Me, Z11-14:Me and Z11-16:Me in a 1:1:100 ratio, which corresponds to the relative abundance of each pheromone precursor in the insect gland (1). The functional assay procedure followed the same protocol as described under *Materials and Methods*. The precursor concentrations in treatment 1 (T1) were 0.5 μ M::0.5 μ M::0.

1. Löfstedt C, Herrebout W, Menken S (1991) Sex pheromones and their potential role in the evolution of sex reproductive isolation in small ermine moths (Yponomeutidae). Chemoecology 2(1):20–28.

Sequence name	Gene accession number*	
Bmo-swdb1	BGIBMGA010457	
Bmo-pgFAR	BAC79426 [†]	
Bmo-swdb2	BGIBMGA010553 ^{‡§}	
Bmo-swdb3	BGIBMGA011217_2 ^{¶‡}	
Bmo-swdb4	BGIBMGA011217_1 ^{¶‡}	
Bmo-swdb5	BGIBMGA011149 [¶]	
Bmo-swdb6	BGIBMGA011147+48 [¶]	
Bmo-swdb7	BGIBMGA006569 [¶]	
Bmo-swdb8	BGIBMGA000659	
Bmo-swdb9	BGIBMGA011207	
Bmo-swdb10	BGIBMGA011145 [¶]	
Bmo-swdb11	BGIBMGA011398 ¹¹	
Bmo-swdb12	BGIBMGA011395 ^{11‡}	
Bmo-swdb13	BGIBMGA011129 ^{11+§}	
Bmo-swdb14	BGIBMGA011138 [‡]	
Bmo-swdb15	BGIBMGA014047	
Bmo-swdb16	BGIBMGA011126	
Bmo-swdb17	BGIBMGA011140	
Bmo-swdb18	BGIBMGA011164	
Bmo-swdb19	BGIBMGA002160	
Bmo-swdb20	BGIBMGA011116 ¹¹	
Bmo-swdb21	BGIBMGA010511 ^{‡§}	

 Table S1. Bombyx mori (Bmo) gene accession numbers used for

 NJ tree construction

*Sequences retrieved from the Silkworm Genome Database (swdb), otherwise indicated. [†]Sequence retrieved from GenBank. [‡]Manually corrected. [§]Partial sequence.

¹Also present in EST databases.

Table S2. Oligonucleotide primer sets

PNAS PNAS

Primer name	Primer sequence (5'–3')	Amplicon size (bp)
5'and 3' cDNA RACE (5R or	⁻ 3R) and RT-PCR (s + as)	
Yev-FARI-5R-as	TGACGACATATTCGATGACCCGGTGTTC	330*
Yev-FARI-3R-s	CGCTCCCTCACTTGTGACAGGTGACAGT	
Yev-FARII-5R-as [†]	GCGTAAGGATGACCCTTCGGCGCTCAA	320*
Yev-FARII-3R-s	TTAGCGGCGCCGGGGGAGGGTAGACA	
Yev-FARIII-5R-as	CGTGCCCCAACGTAGGCTGCCTGTATC	333*
Yev-FARIII-3R-s	TGTGCGGCAAGGAGTCGCAAATGTTC	
16SRNA-s	TGAAGGGCTGCAGTATTTTG	397
16SRNA-as	TCGAGGTCGCAAACTCTTTT	
Quantitative PCR		
Yev-pgFARs	TGACTTGACAATGCCTAACC	179
Yev-pgFARas	TTTCCAGACGATGACAAAGG	
16SRNA-s	GACCTCGATGTTGGATTAAG	95
16SRNA-as	GGTTTGAACTCAGATCATGTAAG	
ORF amplification for func	tional assay	
Yev-pgFAR-s ^{‡§}	aaaATGgTTCAGTTGAAAGAAGATTCTG	1,504
Yev-pgFAR-as ^{‡¶}	CGACTCTCTCTAGGCCAGCTTTTC	
Yev-FARI-s	aaa <u>ATG</u> gCAACAGAAACAGTTGACGT	1,749
Yev-FARI-as	CCGCATAAATTCTCAAAATACACTCG	
Yev-FARIII-s	aacATGgTGGCACGCAGGTTGTCG	1,586
Yev-FARIII-as	AGCAAATC <u>CTA</u> CGCAGCAGGCAGCAA	

*RT-PCR amplicons.

[†]Yev-FARII corresponds to Yev-pgFAR.

^{*}Primer also used to amplify Ypa-pgFAR and Yro-pgFAR ORFs.

[§]The start and stop codons are underlined, the Kozak sequence is indicated in lowercase letters.

[¶]Primer designed based on the 3'UTR sequence information.