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Protected Areas of the Brazilian Amazon. There are 12 types of
conservation reserves in the Brazilian Amazon biome (1) ac-
cording to the National Protected Areas System [Sistema Nacio-
nal de Unidades de Conservação (SNUC), law 9985; June 2000].
These types can be grouped into two major categories that can be
divided further according to state or national jurisdictions (Table
S1): Strictly protected reserves, whose primarily goal is the pres-
ervation of biological diversity, comprise ecological stations
(estação ecológica, ESEC), ecological reserves (reserva ecológica,
RE), biological reserves (reserva biológica, REBIO), state parks
(parque estadual, PE), and national parks (parque nacional,
PARNA). Sustainable use reserves, which seek to balance con-
servation with sustainable use of the natural resources, include
sustainable use reserves (reserva de uso sustentável, RDS or RE-
SEC), extractive reserves (reserva extrativista, RESEX), and areas
of significant ecological interest (área de relevante interesse eco-
lógico, ARIE). Production forests include state forests (floresta
estadual, FLOTA or FE), sustained yield forests (floresta de ren-
dimento sustentado, FLORSU), extraction forests (floresta extra-
tivista, FLOREX), and national forests (floresta nacional,
FLONA). Environmental Protection Areas (Áreas de Proteção
Ambiental, APAs) were not included in this study, because they
are not in the public domain and thus have less stringent envi-
ronmental restrictions. Additional benefits of conservation, such
as ecosystem services (2), are associated with both categories of
protected areas. Of the 320,000 km2 in protected areas currently
supported by the Amazon Protected Areas Program (ARPA)
program (a total of 61 areas), 220,000 km2 are designated as
strictly protected, and 100,000 km2 are designated as sustainable
use (Table S1).
The fifth World Parks Congress, promoted by the International

Union for Conservation of Nature in Durban, and the Convention
on Biological Diversity’s (CBD) Program of Work on Protected
Areas approved by the Seventh Meeting of the Conference of the
Contracting Parties to the Convention on Wetlands refer to pro-
tected areas (PAs) sensu lato as all those areas that contribute to
protect biological diversity even if they have other objectives (3).
Under this definition, PAs in the Brazilian Amazon also include
indigenous lands and military areas. Indigenous lands in Brazil
were established to provide environmental, social, and cultural
sanctuaries to indigenous groups. Because of their central role in
conserving a large portion of the Amazon biome (23.6% by area),
and in accordance with the CBD Program of Work on Protected
Areas decision CBD VII/28 (3), indigenous lands can be consid-
ered PAs (4). Similarly, military areas also play a relevant role in
protecting vast tracts of forests in Brazil, particularly the Serra do
Cachimbo military reservation, which covers 22,500 km2 on the
border of the Pará and Mato Grosso states (Fig. S3).

Comparison of Previous Studies of PA Effect on Deforestation. We
used the following criteria to compare nine PA studies (5–13): (i)
number of PAs and level of aggregation (i.e., whether the study
provides effectiveness measures for individual PAs, for PA cate-
gories, or only for all PAs together); (ii) sampling method (e.g.,
wall-to-wall data versus sampling cells or plots); (iii) use of spatial
variables to predict deforestation or to adjust PA effectiveness
measures, (iv) methods used, focusing on whether the method
tested and corrected for differences in sampling areas inside and
outside PAs; (v) statistical assumptions of the methods used and
whether these assumptions were tested; and (vi) main conclusions
(Table S2).

Measuring PA Effectiveness in Reducing Deforestation. Soares-Filho
et al. (14) adapted the Bayesian method of conditional probability,
known as “weights of evidence” (15), to calculate deforestation
probability maps. Since then, this method has been used widely in
landscape dynamics simulation models to predict spatially de-
forestation (16–19) and other land use changes (20, 21).
The posterior probability of deforestation (D) occurring given

a presence of a binary spatial pattern (B) (e.g., a protected area)
can be denoted as follows:

PfDjBg ¼ PfDg �   PfBjDg
PfBg [1]

This equation can be expressed in terms of odds, defined as a ratio
of the probability that an event will occur to the probability that it
will not occur. For example, the probability of 0.5 of a person
winning a contest is equivalent to odds of 0.5/(1−0.5) = 1. Thus,
transforming Eq. 1 in odds yields

OfDjBg ¼ OfDg  �   PfBjDg
PfBj�Dg [2]

where OfDjBg is the conditional (posterior) odds of D (de-
forestation) given a spatial pattern B, and O{D}is the prior odds
of D. The term PfBjD =PfBj�Dg�

is known as the “sufficient ra-
tio” (15). The natural log of this term is the positive weight of
evidence, W+.
The sufficient ratio (here called simply “odds ratio”) can be

used to assess the relationship between a spatial pattern (e.g., the
presence or absence of a PA) and the probability of occurrence
of a spatial event D, such as deforestation, simply by computing
deforestation inside the spatial pattern and outside it, as in the
case of a protected area (BPA), so that

OfBPAjDg ¼ D∩ BPA � ð�D∩ BPA þ �D ∩ �BPAÞ
�D∩ BPA � ðD∩ BPA þD∩ �BPAÞ

[3]

where D ∩ BPA is the areal extent of deforestation, and �D∩ BPA
is the areal extent of remaining forest within a PA, D∩ �BPA is the
areal extent of deforestation, and �D∩ �BPA is the areal extent of
remaining forest outside a PA. Because this expression is a ratio,
the unit of measurement (e.g., ha, km2, cell unit) does not
matter. In a similar manner, odds ratios can be calculated for any
type of spatial pattern (e.g., soils, distance buffer to roads, ele-
vation ranges) and transformed into W+, so that the conditional
probability of deforestation given the co-occurrence of a set of
spatial patterns is denoted as follows:

PfDjB1 ∩ B2 ∩ B3 ∩::Big ¼ eðW
þ
d þ∑Wþ

i Þ

1þ eðW
þ
d þ∑Wþ

i Þ [4]

where PfDjB1 ∩ B2 ∩ B3 ∩ ::Big is the conditional probability of
deforestation given a set of spatial patterns (B1. . .Bi), Wþ

i is the
weights of evidence of deforestation occurring for spatial pattern
Bi and Wþ

d is the natural log of prior odds of D:

OfDg ¼ ðD∩ BþD∩ �BÞ
ð �D∩ Bþ �D ∩ �BÞ [5]

For models in which the deforestation rate is treated as an ex-
ogenous variable, there is no need to include O{D} in Eq. 4,
because this parameter is the net deforestation rate for a specific
area of study, given that �D represents the remaining forest. The
same rationale applies for the calculation of OfDjBg for PAs if
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we want assess the effect of a PA on deforestation independent
of annual variation in the overall deforestation rate (Fig. S2A).
In this case, OfDjBPAg is equal to OfBPAjDg. Hence, an odds
ratio <1 indicates an inhibitory effect for a PA (its conditional
probability of deforestation is <0.5), and the effect becomes
stronger in magnitude as the odds ratio approaches zero.
The advantage of using this method to assess the role of PA in

locally reducing deforestation is that this spatial metric is in-
dependent of the variation of the overall deforestation rate and is
sensitive to the variations in size of the areas being compared
inside and outside the PA as well as to the PA location with
respect to the Arc of Deforestation (eastern, southern, and
southwestern Amazon). Moreover, this metric is not constrained
by the assumptions of parametric methods (such as linear or
logistic regressions), which spatial data often violate (22). The
only assumption for this Bayesian method consists of conditional
independence between the spatial patterns Bi, which can be
tested using pairwise tests, such as the Crammer’s coefficient
(15). The odds ratio of deforestation occurring can be calculated
for a single PA, for a group of PAs of the same category, or for
all PAs, and these results then can be tested for statistical sig-
nificance, so that a Wþ

i value is statistically significant within
a confidence interval of 95% if jWþ

i j> 1:96 � SE (23), where the
SE is

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N fD∩Bg þ

1
N f�D∩Bg

2

s
[6]

where NfD∩ Bg is the number of occurrences of D in spatial
pattern B, and Nf �D∩ Bg is the number of occurrences of �D in
spatial pattern B. This approximation is asymptotic and thus will
not give ameaningful result if any of the area counts are very small.
A disadvantage is that this method requires a sufficiently large

training data set, implying wall-to-wall deforestation data with
fine spatial resolution. As such, we can show that resampling the
Programa de Cálculo do Desflorestamento da Amazônia (PRO-
DES) original spatial resolution of 0.36 ha may affect the results,
especially for small areas, because the resampling process tends to
omit small deforestation patches. For example, themean odds ratio
forRESEXdoCurralinho is 1.07 at 25 ha and 0.33 at 0.36 ha spatial
resolution. In addition, continuous gray-tone variables must be
categorized in spatial patterns Bi to calculate weights of evidence.
Nevertheless, this calculation can be achieved easily using an op-
timization method available in Soares-Filho et al. (24).

PA Pairwise Comparison Method. Comparisons of interior versus
exterior of deforestation can be biased: Landscape characteristics
in sampled areas are not the same because the locations of PAs
usually are more remote (25) and thus are less likely to be de-
forested than exterior areas (11–13). To overcome this limitation,
we confined our analyses of inhibitory effect to the 10-km buffer
zones immediately inside and outside PAs, where landscape char-
acteristics should be approximately the same. To test this as-
sumption, we integrated the effects of a series of spatial deter-
minants [so-termed because they represent proximate causes of
deforestation (e.g, the opening or paving of a road), or simply are
preferable (e.g., have more fertile soil or flat terrain), or are re-
stricted sites (land use zoning, such as PAs)] into a probability
map of deforestation. This approach is similar to the logistic re-
gression method used to calculate propensity scores (12), al-
though it is not parametric, and thus takes into account the
differential effects of spatial determinants on the spatial pre-
diction of deforestation.
Among the various factors that influence the location of de-

forestation in the Amazon (14, 16), we chose the following
variables: (i) distance to rivers, (ii) distance to major roads, (iii)
maximum net present value (MNPV) from soy and cattle rents

(26), (iv) suitability of soil and terrain for mechanized crops (27),
(v) elevation, (vi) slope; and (vii) attraction by urban centers,
which is an output from a gravitational model of urban centers,
where urban population is the mass of urban center i as follows:
∑Massi/distancei (16). Distance to vicinal roads and population
density were not included, because the creation of a PA prevents
roads being built and people moving in.
First, we tested these variables for spatial dependence by using

the Crammer′s coefficient (15), and because they showed little
spatial dependence (only suitability of soil and terrain for
mechanized farming with MNPV showed a certain level of spa-
tial association, still <50%), we derived weights of evidence for
them. The differential effects of these variables on the location
of deforestation, as represented by their weights of evidence
coefficients, are integrated by using Eq. 4 to produce a proba-
bility map. We performed the weights of evidence analysis using
deforestation data up to 1997 and validated the resulting proba-
bility map by simulating deforestation with the Brazilian Amazon
rates from 1997–2008. The method we used to validate the sim-
ulation is known as the “reciprocal fuzzy comparison” (24, 28). It
evaluates the spatial match between the observed changes and
simulated ones within map windows of increasing size. As a re-
sult, the model showed a spatial fitness of 70% at a window size
of 7.5 km, meaning that it can predict accurately the location
of 70% of the Brazilian Amazon deforestation (1997–2008) at
a 7.5-km search radius.
Next, for each PA we compared the distributions of de-

forestation probability in the 10-km buffer zones immediately
within and outside the PA border. In general the pairs of 10-km
adjacent buffers presented close mean probabilities of de-
forestation, yielding a regression with R2 of 0.945 and β0 slightly
exceeding 1 (y = 1.027x). Nevertheless, 453 of 571 pairs turned
out to have different distributions according to both Kolmo-
gorov-Smirnov and Kruskal-Wallis tests (95% confidence in-
terval). These results suggest the need to compensate for the
differences in conditional probabilities in the areas of compari-
son. One approach would be to try to find matching samples.
However, because the PAs in the Brazilian Amazon form
a complex and interlocking mosaic, this strategy would prove
difficult. Statistical tests show that most pairs of 10-km adjacent
buffers have different distributions of probability, suggesting that
we should look for potential matching samples at a distance from
PA boundaries, both inside and outside the PA. The conditional
probability of deforestation tends to increase from PAs toward
major roads and towns, making it virtually impossible to find
a sufficiently large number of samples (that could yield statisti-
cally significant results) with equivalent deforestation probabili-
ties in a particular PA and its area of influence. A feasible
alternative approach consists of adjusting the odds ratio to
compensate for differences in deforestation probability in areas
used for pairwise comparison. The weights of evidence method
integrates the effects of all spatial determinants by summing
their weights of evidence (including the ones of PAs) to produce
the probability map. In next section we show that this calculation
also can be used to generate an adjusted odds ratio, in which the
conditional probability of deforestation becomes embedded.

Odds Ratio of Deforestation Adjusted to Compensate for Differences
in Deforestation Probability in Areas Used for Pairwise Comparison.
To account for differences in the probability of deforestation in
the areas used for pairwise comparison, we can convert their
conditional deforestation probabilities (Eq. 4) into sums of
weights of evidence, which represent the integrated effect of
other factors (but not PA status) on deforestation and subtract
the sum of weights of the internal buffer from that of the ex-
ternal buffer, as follows: ΔWþ ¼ ∑Wþ

iðoutÞ −∑Wþ
iðinÞ. Then

the term ΔWþ is added to the summation of Eq. 4 to adjust the
conditional probability of deforestation of the PA internal

Soares-Filho et al. www.pnas.org/cgi/content/short/0913048107 2 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0913048107/-/DCSupplemental/pnas.200913048SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/content/short/0913048107


buffer. This calculation also can be performed using the ratio
between the conditional odds of deforestation in the interior and
exterior buffer zones, so that an adjusted PA odds ratio is

OfBPAjDgadjusted ¼ OfBPAjDg
�OfDjB1∩::Bigout=OfDjB1∩::Bigin [7]

where OfDjB1∩::Bigout and OfDjB1∩::Bigin represent the mean
conditional odds ratios of deforestation, when controlling for
a group of spatial determinants in the internal and external
buffers. Replacing OfBPAjDg in Eq. 7 with Eq. 3 yields the fol-
lowing:

OfPAjDgadjusted
¼ OfDjB1 ∩ ::Bigout �D∩ BPA � ð�D∩ BPA þ �D ∩ �BPAÞ

OfDjB1 ∩ ::Bigin � �D∩ BPA � ðD∩ BPA þD∩ �BPAÞ
[8]

Algebraic manipulation of Eq. 8 leads to

Instead of using single mean values for OfDjB1∩::Bigout and
OfDjB1∩::Bigin for adjusting OfPAjDg, considering that the
average is a statistical measure that does not necessarily differ-
entiate unlike populations, the previous equation can be trans-
formed into a summation, which enables us to compute the
conditional odds ratios of all spatial determinants of deforestation
at a cell x,y continuously across the space as follows:

As a result, Eq. 10 incorporates differences in the conditional
probability of deforestation in both forested and deforested cells
of the areas of pairwise comparison independent of the cell lo-
cation. In addition, it continues to incorporate all features of the
Bayesian weights of evidence method and therefore can be ap-
plied straightforwardly to a basin-wide assessment of PAs
(Fig. S3). We demonstrate the simplicity of this method by making
available for download a sequence of models designed with Di-
namica EGO (for “Environment for Geoprocessing Objects”).
Dinamica EGO freeware contains a series of spatial algorithms
for the analysis and simulation of space–time phenomena (24). Its
graphical interface allows the design of a model simply by dragging
and connecting operators that perform some calculation upon
various types of data, such as constants, matrices, tables, and raster
maps. Software, models, and a demonstration dataset (25 ha spa-
tial resolution) are available for download upon request to the
corresponding author.

Analyzing Spatial Dependence Between the Creation of PAs and
Deforestation. We did a binary test for 50-km cells where PAs
expanded (Fig. S5A) and for cells where deforestation increased
(Fig. S5B). According to the K12 test (29), increase in extent of
PA and increase in deforestation outside of PAs were not spa-
tially dependent, as demonstrated by the fact that the K12
function fell within the confidence envelope. In addition, we
evaluated the spatial dependence between maps of percent in
PA increase versus the maps of percent in deforestation re-

duction and increase applying the Cramer’s coefficient and
Cramer’s contingency coefficient pairwise tests (15) (Fig. S5 A–
D). This assessment used 50-km cell maps as well as Amazon
municipality maps. The use of both approaches ensured that
a wide range of PA coverage is represented within the spatial
units of analysis (Fig. S5D). Neither of the Cramer indices in-
dicated spatial dependence between the maps (all values were
<50%), and the indices showed even less spatial dependence
when we compared the map of increase in deforestation with the
map of PA expansion. As a result, no spatial dependence was
found between areas where PAs expanded and the few areas in
the Amazon where deforestation increased contrary to the
overall declining trend (Fig. S5 A–D).

Modeling PA Contribution to the Recent Decline in the Amazon
Deforestation Rates. Model development. Our econometric model
analyzes the influence of a series of socioeconomic and de-
mographic variables [selected from 1996 and 2000 Instituto
Brasileiro de Geografia e Estatísticas (IBGE) censuses and from
other economic and social surveys carried out within this period]
on the deforestation trend. This dataset includes the following
variables: (i) proximity to paved road and (ii) urban attraction
(source of i and ii: refs. 16 and 26); (iii) density of cattle herd
[source: IBGE Pesquisa Pecuária Municipal (PPM) municipal
cattle herd surveys, 1997 and 2001 (30)], (iv) percentage of crop
areas [source: IBGE Pesquisa Agrícola Municipal (PAM) mu-
nicipal agricultural survey, 1997 and 2001 (30)], (v) crop rent,
(vi) percentage of jobs in the agricultural sector, and (vii) land
concentration (large landholders/small land holders) [source of
v–vii: IBGE 1995–1996 agricultural census (30)]; (viii) total
population density, (ix) rural population density, (x) rural pop-
ulation density, (xi) urbanization level, (xii) net migration rate
(1995/2000), and (xiii) migratory volume (1995/2000) [source of
viii–xiii: IBGE 1996 population tally and IBGE 2000 de-
mographic census (30)]; (xiv) domestic gross product (30) and
percentage of protected area. Data from command and control
programs (31) could not be included, because this information is
classified. This data set was assembled for each Brazilian Ama-
zon municipality together with PRODES wall-to-wall de-
forestation data from 1997–2001 (32), which were aggregated at
the municipal level to comprise the dependent variable.
To account for the large variation in the size of the Amazon

municipalities, we weighted some variables that depend greatly on
the size of the sampling unit by municipality area to produce, for
example, densities of cattle herd, percent of crop areas, and
density of rural population. Deforestation, the dependent vari-
able, also was transformed into a percentage by area.We began by
analyzing two models: one relating stocks of the independent
variables with the percent of deforested area, and the other re-
lating the net deforestation rate (1997–2001 gross deforestation
rates in hectares divided by the municipality’s original forest
area) with changes in the socioeconomic context. In both cases,
we excluded municipalities outside the Amazon forest biome as
well as those with lack of data resulting from gaps in PRODES
mapping or cloud coverage problems. By this approach we aimed
to reduce uncertainties in the early PRODES phase, whose
methodology was based solely on visual interpretation. The first
model is subject to temporal dependence: Similar to the chicken-
and-egg dilemma, we cannot assert which variable (e.g., defor-
ested area or density of cattle herd) is cause, and which is effect.
Hence, we used only the second model, which is devoid of
temporal dependence, because it relates rates of deforestation
with rates of change of socioeconomic variables (33).
To adapt the model better to our knowledge, we adopted an ad

hoc criterion of inclusion and exclusion of variable to the stepwise
regression results. The criterion consists of interrupting the
variable swapping process when the R2 of the best-fit stepwise
regression is reduced by 5%. After variable selection the model
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passed a heteroskedastic control and was tested for spatial au-
tocorrelation using Moran’s I, Lagrange Multiplier, and Robust
LM tests (34). Because the model failed the autocorrelation
tests, we removed this effect by developing a spatial lag re-
gression as follows:

y ¼ ρWyþ Xβþ ε [11]

Where ρ is the autoregressive coefficient, W is a first-order
neighborhood matrix, y is the dependent variable, X is the matrix
of observations for the independent variables, β is the vector of
regression coefficients, and ε is a random error term (34).
As a result, the final regression model achieved an R2 of 0.64

(Table S3). Proximity to paved roads, change in cattle herd
density, change in percent of crop areas, net migration rates, and
percent of protected areas were the most important variables in
explaining the deforestation rates within the 1997–2001 period,
with only the last exhibiting a negative relationship to de-
forestation rates.
Model validation. In model validation it is necessary to use data that
were not used in the calibration process. Therefore, we validated
the model projecting annual deforestation rates from 2002–2006,
using a series of socioeconomic data (change in cattle herd,
change in percent of crop areas) obtained from annual IBGE
surveys (Fig. S1 A and B) and the percent increase of area in PAs
within the municipality as a result of the recent expansion of the
Amazon PA network (Fig. 1 and Fig. S1C). The other two var-
iables (net migration rate and proximity to paved road) were
kept constant, because they did not experience significant al-
teration during the 2002–2006 period.
We had to adapt the model for the validation process. First, the

term ρWy (Eq. 11) had to be calculated in an iterative way using
moving averages of the y responses from the neighboring mu-
nicipalities. Second, because variables cover 4 years (1997–2001)
of deforestation, we fixed the rates of changes of the in-
dependent variables for a period of 4 years to project their ef-
fects and then divided the resulting gross deforestation rate by 4
to scale to annual output.
Following these adaptations, it was anticipated that the de-

forestation rates from the model would respond quickly to the
variations in rates of cattle herd growth and crop expansion and to
the percentage of municipality area covered by PA (Fig. S1D).
Both the size of the cattle herd and the area in cropland expanded
rapidly in the Amazon from the beginning of this decade until
2005, when the soy market crashed, severely impacting the Bra-
zilian agricultural sector (Fig. S1 A and B). In turn, of a 5.1 million
km2 area that corresponds to 792 Amazon municipalities, the PA
network expanded from 19% in 2001 to 23% in 2002, 25% in
2003, 29% in 2004, 30% in 2005, and 35% in 2006 (Fig. S1C).

Modeling PA Contribution to the Recent Decline in Deforestation
Rates. Fig. S4 A and B shows differences from 2001–2004 and
from 2004–2006, respectively, in projected deforestation for
Amazon municipalities, given rates of change of the cattle herd,
crop area, and percent of the municipality in PAs during each
period. Fig. S4A shows that most of the municipalities experi-
enced an increase in deforestation between 2002 and 2004, es-
pecially along the Arc of Deforestation. This trend then reversed
during the period 2004–2006, with most municipalities exhibiting
a decline in deforestation (Fig. S4B). To separate the effect of
PA expansion from the effect of the deceleration of the agri-
cultural sector on deforestation during the same period, we ran
two models with data from 2006, first excluding the PA expan-
sion that occurred during this period (using PA data from 2004
instead of 2006) and then replacing the values for cattle herd
growth and rate of increase in crop areas for 2006 with those for
2004. Finally, for each of the alternate models for 2006, we
compared the difference between predicted deforestation rates

and observed deforestation rates during the same period (Fig. S4
C and D). As a result, municipalities where PA expansion had
greater influence on the reduction in the deforestation rate show
negative values in Fig. S4C , and municipalities where agricul-
tural influence was stronger show negative values in Fig. S4D.

Simulating the Future Contribution of PAs to Reducing Deforestation
in the Brazilian Amazon. We coupled the econometric projection
model to SimAmazonia (16). In this model, called “SimAma-
zonia-2,” deforestation rates are projected based on scenarios of
agricultural growth, protected area network, migration, and in-
frastructure improvement. The two socioeconomic scenarios—
high and moderate growth—involve, respectively, the following
assumptions: (i) mean annual rate of cattle herd expansion: 5%
year−1 and 2% year−1; (ii) mean annual rate of crop expansion:
5% year−1 and 2% year−1; (iii) internal migration rates: 1996–
2000 rates and no migration; (iv) extent of road paving expan-
sion: 14,000 km and 11,500 km [thus excluding the paving of BR-
163 Trairão from the Mato Grosso border, BR-230 from Itaituba
to Humaitá, BR-319 Manaus-Porto Velho, and BR-230 Peri-
metral Norte (16)]. Because this model incorporates a neigh-
borhood matrix, it can be used to infer potential for future
deforestation in a specific Amazon municipality not only from
changes in its socioeconomic and demographic context but also
in the context of its neighboring municipalities. To simulate
future deforestation trajectories, the model was adapted to
constrain rates of cattle herd and crop growth by available ag-
ricultural land in each municipality. Next, the gross deforestation
rates predicted by the model were aggregated for subregions (35)
to be used as an input in a spatially explicit model (the SimA-
mazonia-2 transition module consists of a Cellular Automata
model (36) that runs at a spatial resolution of 100 ha per cell) that
integrates the influence of a set of spatial determinants such as
elevation, slope, rivers, vegetation, soils, climate, infrastructure,
towns, and land-use zoning (e.g., presence or absence of a cate-
gory of PA) to predict the location of deforestation (14, 16). The
area-weighted mean effect per category of PA (Table 1), mea-
sured in the odds ratio of deforestation and then transformed into
weights of evidence, is used for this calculation. In this case, the
model employs the odds ratios before adjustment, because the
effects of other spatial determinants also are taken into account in
the computation of Eq. 4. SimAmazonia-2 also is implemented
with Dinamica EGO freeware (24).
The scenario of exclusion of all current PAs aims to determine

which PAs would be most susceptible to deforestation if they did
not, in fact, protected; hence, its outcome shows where PAs are
extremely effective in slowing the advance of deforestation.
Because this effect is time-dependent (the deforestation frontier
will reach different PAs at different times), we established an
index to calculate the threat posed by future deforestation, as
follows:

Level of threat

¼ 100 �model final timeþ1-year that a cell is deforested
model final timeþ1-model initial time

[12]

Opportunity Costs of Protected Areas. To estimate the opportunity
costs for preventing forest conversion to agricultural land (Dataset
S1), we applied a set of spatially explicit dynamic models of po-
tential rents from soy, cattle, and timber production (26, 37).
We incorporated uncertainty bounds in the rent estimates,

running the models within a range of input prices: the cattle
model with the lowest and highest annual mean cattle and
beef prices from 2002–2009 for the Brazilian Amazon states
(US$1.70 ± 0.14 to US$2.58 ± 0.27 kg−1 www.cepea.esalq.usp.br),
the soy model with historical recent low (2002–2006) and high
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(2007–2009) average soy prices (US$229–335 ton−1 freight on
board; www.cisoja.com.br), and the logging model [because no
price series is available for the major Amazon milling centers, we
first used fixed 2004 sawnwood prices (38) and then projected
these prices into the future using their 1998–2004 annual growth
rate of 1.5% (39)].
The timber rent model consists of a 30-year, partial equilib-

rium, spatial simulation model of the Amazon timber industry,
which calculates a residual stumpage value on forest lands, an
annual harvest volume and value, and potential tax revenues and
thereby forecasts industrial capacity (38). A residual analysis is
used to calculate standing tree value or forest rent for each land
unit. Commercial volume is estimated for each land unit using
available geographical data and an initial demand corresponding
to current logging capacity of processing centers. Processing
centers are assumed to be located at municipal seats. A sawn-
wood price at the mill gate is specified for each processing
center, and the model works recursively for each land unit, de-
ducting transport costs for wood from the land unit to the mill
gate. The resulting value is the potential net rent from harvesting
a particular forest land unit in a given location at a given point in
time. This value is known in economics as a “residual” or
“stumpage” price. This stumpage price is multiplied by com-
mercial volume at each land unit to arrive at an estimate of
forest rent for the land unit. Furthermore, the model can force
the industry into a sustainable mode, assuming that each pro-
cessing center will harvest only 1/30th of its available volume.
The cattle ranching model integrates a herd development

model and a production rent function that includes initial ranch
infrastructure, herd acquisition, and periodic cattle maintenance
costs and sale revenues (26). The model is designed to simulate
the 30-year net present value (NPV) of extensive cattle ranching
for a given land parcel in the Brazilian Amazon. To arrive at this
figure, we developed a spatially and temporally explicit profit
function that reflects the fixed and variable costs associated with
extensive cattle ranching in the region. Annual profit is calcu-
lated for each year that the model runs and then is discounted to
the initial year and summed over the 30-year time horizon of the
model to arrive at a NPV figure for a given land parcel. We
assume that, in the initial year, the agent acquires (either
through purchase or occupation) and deforests the land. Fol-
lowing the process of deforestation and land clearing, we assume
that some upfront investment in property infrastructure is re-
quired (e.g., construction of fences and roads, a corral, water and
feeding troughs). We estimate the value of these costs on a per-
hectare basis by making reasonable assumptions about the level
and type of type of investments made by a representative rancher
with a 3,000-ha property. Rather than assume that the repre-
sentative rancher has sufficient financial capital on hand to clear
land, build roads, and make all required investments, we simu-
late these investments over the first 12 years of the model using
an annual loan repayment schedule specific to the interest rate
and grace and repayment periods for different types of agricul-

tural credit. In addition, we incorporate maintenance for each
type of infrastructure into annual (variable) costs. Similarly, we
distribute the cost of purchase of a sufficient number of cows and
bulls to give rise to and maintain a self-sustaining herd for beef
production over the first few years of the model. Annual (vari-
able) costs include infrastructure maintenance, taxes on the
value of animal sales and on productive land, and wages for
a manager and ranch hands. The largest portion of annual costs
comprises the costs of vaccinating and maintaining the herd. We
simulate spatially variable transportation costs for production
inputs using a percent markup over input price to a maximum of
1.5 times the cost of the original input. Cost increases propor-
tionally to distance along paved roads and then increases more
than proportionally to distance for cells that are more removed
from the road until it reaches the maximum cost. The cost of
transporting animals from a given land parcel to a slaughter-
house location is simply the cost of transportation per animal
kilometer−1 multiplied by the distance to slaughter. Annual
revenue from sales of each type of animal and density of heads
per land parcel compose the NPV figure hectare−1.
To estimate soybean crop rents, we applied an interdisciplinary

model based on climate, soils, and economic variables (40). This
model comprises a component of soybean yield that integrates
the major climatic, edaphic, and economic determinants for soy
crops in the Amazon Basin. Yield is simulated using a crop
physiology model that captures the effects of climate and phys-
ical attributes on the development of soybean plants (40). Cou-
pled to the yield component is a rent model that deducts the
costs of soybean production (e.g., fertilizer applications and
credit costs) and transportation to exportation ports from its
market price; the result then is multiplied by the expected pro-
ductivity hectare−1 output by the yield component. We adapted
this model to simulate soybean profitability over a 30-year period
based on variation in transportation costs resulting from road
expansion and paving throughout the Amazon region (16). We
then constrained the soy rent model to produce positive rents
only on land suitable for mechanized agriculture. The suitability
map for mechanized agriculture takes into account four factors
(27): the availability of flat land, appropriate soils, inundation-free
areas, and regions without climatic restrictions. The first factor
was obtained deriving the Shuttle Radar Topography Mission
topography to produce an altitude deviance map and then visually
setting a threshold to identify the flat lands. As a last step, a mode
filter was applied to eliminate small areas, because mechanized
agriculture requires large tracts of land. Soil criteria excluded soils
with strong edaphic restrictions (e.g., ultisols, lithosols, dysthropic
podzols, sands, and hydromorphic soils). Flooding plains were
mapped by expanding the altitudes on the major river channels to
the surrounding regions and then defining a flooding threshold
equal to the river altitudes plus 10 m. Finally, regions with average
annual precipitation above 2,250 mm or above 0.5 mm day−1

during the 4 driest months were masked from the combined map,
because they are too rainy to develop large-scale crops.
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Fig. S1. Variation in the socioeconomic context, PA expansion, and model validation. (A) Recent crop area expansion in the Amazon (1). (B) Recent cattle herd
expansion in the Amazon (2). (C) PA expansion in the Brazilian Amazon from 2001–2009. (D) Model validation.

1. Instituto Brasileiro de Geografia e Estatística (2008) IBGE – PAM: Pesquisa Agropecuária Municipal. Available at http://www.sidra.ibge.gov.br/bda/pesquisas/pam/. Accessed May 14, 2010.
2. Instituto Brasileiro de Geografia e Estatística (2008) IBGE – PPM: Pesquisa Pecuária Municipal. Available at http://www.sidra.ibge.gov.br/bda/pesquisas/ppm/. Accessed May 14, 2010.
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Fig. S2. Odds ratios of deforestation. (A) Prior odds ratio of deforestation in a 10-km buffer both inside and outside the PA boundary (OddsD). Note that this
metric is influenced by the Brazilian Amazon overall rate of deforestation. (B) Odds ratios of deforestation in PAs, when analyzing data in PAs and in adjacent
buffer zones of 10, 20, and 50 km, before adjusting the odds ratio to incorporate the effect of other spatial determinants of deforestation. Annual variation in
odds ratios reflects different proportions of deforestation over time in areas of comparison inside and outside PAs.
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Fig. S3. Mean adjusted odds ratios of deforestation in PAs (1997–2008). Note the inhibitory effect of indigenous lands, such as the Xingu/Jarina/Menkragnotí/
Kayapó/Baú complex in the central part of Mato Grosso and Pará (A) and the Serra do Cachimbo reservation (B). Other items in the legend represent non-
significant values and zero odds ratios. AC, Acre; AM, Amazonas; AP, Amapá; MA, Maranhão; MT, Mato Grosso; PA, Pará; RO, Rondônia; RR, Roraima; TO,
Tocantins.
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Fig. S4. Predicted variation in deforestation rates. (A) Predicted percent variation in deforestation rates from 2001–2004. (B) Predicted percent variation in
deforestation rates from 2004 to 2006. (C) Difference (percent) in 2006 predicted deforestation rates, excluding the expansion of PAs within the period 2004–
2006. (D) Difference (percent) in 2006 predicted deforestation rates, maintaining 2004 agricultural growth rates.
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Other Supporting Information Files

Table S1 (DOCX)
Table S2 (DOCX)
Table S3 (DOCX)
Dataset S1 (XLSX)

Fig. S5. PA expansion versus deforestation variation. (A) Percent of PA expansion from 2002–2007 within 50 × 50 km grid cells, excluding cells completely
covered by PAs. (B) Increase in biennial deforestation rates outside PAs from 2002–2004 to 2005–2007. (C) Reduction in biennial deforestation rates outside PAs
from 2002–2004 to 2005–2007. (D) Percent variation in biennial deforestation rates outside PAs from 2002–2004 to 2005–2007.
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