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Flow chart of network decomposition procedureFor a given biological network, its dynamics or the state transition graph
will be generated using Eq. (2) in the main text to solve for the state variables si(t) with the known interaction variables
rji and gji. The convergent trajectory S∗ of the dynamics is extracted, which, as clearly argued in [3] and [4], represents
the primary biological process or function of the given biological network. Eq. (2) is employed again but to solve for now
unknown interaction variables rji and gji to identify all feasible network solutions that support the biological process S∗ but
not necessarily the entire dynamics. Note that now the state variables si(t) are known and restricted to S∗.

There are a large number of network solutions besides the originally given network, among which is the minimal network
of smallest number of interactions that is also a subnetwork of the given network. This particular minimal network thus
forms the backbone of the network decomposition that is mandatory to maintain the primary function without any redundant
interactions. Interestingly, by dissecting the backbone from the given network, the remaining edges clearly show recurring motif
patterns in the forms of mutual inhibition or activation loops. Furthermore, as described in the main text, the functional role
of these small motifs can be clearly characterized and was found to enhance the stability of the primary function.

We illustrate below in Fig. (S.1) the key components of the flow chart of a generic network decomposition procedure with
the particular example of budding yeast cell cycle network.
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Fig. S.1. The flow chart of reverse engineering and network decomposition. (a) The general procedure. (b) The example of budding yeast

network.
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An example for solving the network equation We use node 6 of the budding yeast network as an example to explain the Boolean
equations and their solutions. The following table is reproduced from Fig. 1(a) in the main text, where the states of node 6
are highlighted in red.

Time Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20/14 Clb5,6 Sic1 Clb1,2 Mcm1/SFF Phase

t s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

0 1 0 0 0 1 0 0 0 1 0 0 START

1 0 1 1 0 1 0 0 0 1 0 0 G1

2 0 1 1 1 1 0 0 0 1 0 0 G1

3 0 1 1 1 0 0 0 0 0 0 0 G1

4 0 1 1 1 0 0 0 1 0 0 0 S

5 0 1 1 1 0 0 0 1 0 1 1 G2

6 0 0 0 1 0 0 1 1 0 1 1 M

7 0 0 0 0 0 0 1 0 0 0 1 M

8 0 0 0 0 1 1 1 0 1 0 0 M

9 0 0 0 0 1 1 0 0 1 0 0 G1

10 0 0 0 0 1 0 0 0 1 0 0 G1

11 0 0 0 0 1 0 0 0 1 0 0 G1

For each state transition, we can write a Boolean equation according to Eq. (2), where addition and multiplication represent
OR and AND operations, respectively. With i = 6 thereafter, the equations are:

0
↓ r1i + r5i + r9i + giig1ig5ig9i = 1

[S.1]

0
↓ r2i + r3i + r5i + r9i + giig2ig3ig5ig9i = 1

[S.2]

0
↓ r2i + r3i + r4i + r5i + r9i + giig2ig3ig4ig5ig9i = 1

[S.3]

0
↓ r2i + r3i + r4i + giig2ig3ig4i = 1

[S.4]

0
↓ r2i + r3i + r4i + r8i + giig2ig3ig4ig8i = 1

[S.5]

0
↓ r2i + r3i + r4i + r8i + r10,i + r11,i + giig2ig3ig4ig8ig10,ig11,i = 1

[S.6]

0
↓ r4i + r7i + r8i + r10,i + r11,i + giig4ig7ig8ig10,ig11,i = 1

[S.7]

0
↓ r7ir11,i (gii + g7i + g11,i) = 1

[S.8]

1
↓ r5ir7ir9i (rii + g5i + g7i + g9i) = 1

[S.9]

1
↓ r5i + r9i + riig5ig9i = 1

[S.10]

0
↓ r5i + r9i + giig5ig9i = 1

[S.11]

0
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From Eqs. (S.8) and (S.9) one obtains r5i = r7i = r9i = r11,i = 0. After substituting them into the above equations, one
has

r1i + giig1ig5ig9i = 1 [S.12]

r2i + r3i + giig2ig3ig5ig9i = 1 [S.13]

r2i + r3i + r4i + giig2ig3ig4ig5ig9i = 1 [S.14]

r2i + r3i + r4i + giig2ig3ig4i = 1 [S.15]

r2i + r3i + r4i + r8i + giig2ig3ig4ig8i = 1 [S.16]

r2i + r3i + r4i + r8i + r10,i + giig2ig3ig4ig8ig10,ig11,i = 1 [S.17]

r4i + r8i + r10,i + giig4ig7ig8ig10,ig11,i = 1 [S.18]

gii + g7i + g11,i = 1 [S.19]

rii + g5i + g7i + g9i = 1 [S.20]

riig5ig9i = 1 [S.21]

giig5ig9i = 1 [S.22]

From Eqs. (S.21) and (S.22) one obtains rii = 1 and g5i = g9i = 0, which yields g7i = 1 and g1i = 0 after their substitution
into Eq. (S.20) and (S.12), respectively. The above equations are further simplified to

r2i + r3i + g2ig3i = 1

r2i + r3i + r4i + g2ig3ig4i = 1

r2i + r3i + r4i + r8i + g2ig3ig4ig8i = 1

r4i + r8i + r10,i = 1

To solve the above equations, one needs only to enumerate nodes 2, 3, 4, 8, and 10. We first enumerate node 2, which has
three possibilities: r2i = 1 (red edge), g2i = 1 (green edge), or n2i = 1 (no edge). Note that we have introduced a new variable
nji = rjigji. The substitution of r2i = 1 yields

r4i + r8i + r10,i = 1.

The substitution of g2i = 1 yields

r3i = 1

r3i + r4i = 1

r3i + r4i + r8i = 1

r4i + r8i + r10,i = 1.

The substitution of n2i = 1 yields

r3i + g4i = 1

r3i + r4i + r8i + g4ig8i = 1

r4i + r8i + r10,i = 1.

As can be seen from above, the equations are greatly simplified after each substitution. We then successively enumerate other
nodes 3, 4, 8, and 10, until the solutions are complete. In total there are 432 solutions, which is the designability of node 6. In
the following we list four solutions as an example:

n1in2in3ir4in5iriig7in8in9in10,in11,i = 1, [S.23]

n1in2in3in4in5iriig7ir8in9in10,in11,i = 1, [S.24]

n1in2in3in4in5iriig7in8in9ir10,in11,i = 1, [S.25]

and
r1ir2ig3ir4in5iriig7ir8ir9in10,ig11,i = 1. [S.26]

Edge classification The edges can be classified according to their importance in the solutions.
The rigid edges are those absolutely required edges. For node i = 6, they are rii and g7i, which are shown in red in Eqs.

(S.23–S.26).
The interchangeable edges are those edges that can be replaced by each other. For node i = 6, only one of the three edges

r4i, r8i, and r10,i is required. They are thus interchangeable edges, shown in green in Eqs. (S.23–S.26).
The supplemental edges are not mandatory for the biological process. For example, Eq. (S.26) is still a solution after the

blue edges are changed into n1i, n2i, n3i, n9i, and n11,i. The blue edges are thus supplemental edges.
All the rigid edges and one set of interchangeable edges constitute a minimal solution. For node i = 6, Eqs. (S.23–S.25)

are all minimal solutions, whereas Eq. (S.26), which consists of some supplemental edges, is not.
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Minimal networks. Table S.1 summarizes the minimal solutions (rigid and interchangeable edges) of all the nodes of the budding
yeast network. A minimal network can be constructed by selecting one minimal solution from every node. There are 108,864
minimal networks in total.

Node Rigid Interchangeable

1 - (r11)
∗, (r51), (r91)

2 (g12)
∗ (r10,2)

∗, ( r11,2)

3 (g13)
∗ (r10,3)

∗, (r11,3)

4 - (g34 r44)
∗,(g24 r44),(g24 r74),(g34 r74)

5 (r45)
∗ (g55), (g75)

∗, (g11,5)

6 (r66 g76)
∗ (r10,6)

∗, (r46), (r86)

7 - (r77 g11,7)
∗, (r57 g10,7), (r57 g11,7), (r67

g11,7), (r67 g10,7), (r97 g10,7), (r97 g11,7)

8 - (g28 r78 r98)
∗,(g88 r58 r78),(g88 r78 r98)

(g28 r58 r78), (g28 r58 r88), (g28 r88 r98),

(g38 r58 r78), (g38 r58 r88), (g38 r78 r98),

(g38 r88 r98), (g48 r58 r78), (g48 r78 r98)

9 (r49)
∗ (g99), (g79)

∗, (g11,9)

10 (r7,10 g8,10)
∗ -

11 (g8,11 r11,11)
∗ -

TABLE S.1: The rigid and interchangeable edges of all the nodes of the budding yeast network.

The edges with asterisks are present in the cell cycle network of budding yeast proposed by Li et

al [3].
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