Supporting Information

Gries et al. 10.1073/pnas.1000967107

SI Text

SI Materials and Methods. Solutions and materials. RNA polymerase holoenzyme (RNAP) containing σ^{70} was endogenously expressed and purified from *Escherichia coli* K-12 MG1655. To label the nt strand for footprinting, DNA fragments containing the λP_R promoter were obtained from pMR288 using XbaI and SmaI cleavage; polynucleotide kinase (PNK) was used to add ³²P. To label the template strand, pBR81 was cut using BssHII and SmaI, and radio-labeled with ³²P using PNK. Fragments were isolated as described in ref. 1. Binding buffer (BB) contained 40 mM tris(hydroxymethyl)-aminomethane (Tris; pH 8.0 at 10 °C), 10 mM MgCl₂, 120 mM NaCl, and 100 µg/mL bovine serum albumin. RNAP storage buffer (SB) contained 10 mM Tris (pH 7.5 at 4 °C) 6.85 M glycerol, 100 mM NaCl, 100 nM Na₂EDTA, and 100 nM DTT. Enzymes were from New England Biolabs, and chemical reagents were from Sigma-Aldrich.

Population modeling. Interpolated rate constants from ref. 2 were input into Berkeley Madonna software (R.I. Macey and George F. Oster, University of California-Berkeley, www. berkeleymadonna.com) to generate a population histogram for the reaction resulting after addition of a nonperturbing competitor heparin or after a [NaCl] upshift of preformed open complexes. The population histogram was integrated with a 150-ms interval for each time point to correct for the lowering of time resolution due to the time required for the MnO_4^- reaction. The MnO_4^- reactivity for each reactive thymine position in I₂ relative to that of the RPo control was determined by comparing the observed amplitude and decay of reactivity to simulation-generated curves. To generate simulated MnO₄⁻ reactivity at each time point, the population of RP_o remaining was considered to retain 100% reactivity, whereas the remaining population of I_2 was considered to retain a constant fraction (0–100%) of the reactivity of the RP_o control throughout the decay.

Table S1. Simulation parameters utilized in Fig. 1

0.120 M salt	1.1 M salt
$\begin{split} & K_1 = 2.7 \times 10^7 \text{ M}^{-1} * \\ & k_2 = 2.1 \times 10^{-3} \text{ s}^{-1} * \\ & k_{-2} = 0.72 \text{ s}^{-1} * \\ & k_3 = 100 \text{ s}^{-1} * \\ & k_{-3} = 0.033 \text{ s}^{-1} * \end{split}$	$\begin{array}{l} k_{-2} = 0.72 \ \mathrm{s}^{-1}{}^{\mathrm{t}} \\ k_{3} = 0.093 \ \mathrm{s}^{-1}{}^{\mathrm{s}} \\ k_{-3} = 10 \ \mathrm{s}^{-1}{}^{\mathrm{s}} \end{array}$

*Interpolated from the temperature dependence of values for K_1 in ref. 1. [†]Ref. 2.

[‡]Ref. 1.

[§]The observed, overall salt dependence of k_d from ref. 2 was dissected into the individual salt dependence of k_3 and k_{-3} ($\frac{d\ln k_3}{d\ln |salt|} \approx -3.15$ and $\frac{d\ln k_{-3}}{d\ln |salt|} \approx 2.58$). Values of k_3 and k_{-3} in 1.1 M salt were determined by applying the individual salt dependences to the values of k_3 and k_{-3} in 0.120 M salt from ref. 2.

- 1 Craig ML, et al. (1998) DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA. J Mol Biol 283:741–756.
- 2 Kontur WS, Saecker RM, Capp MW, Record MT, Jr. (2008) Late steps in the formation of E. coli RNA polymerase-∂P_R promoter open complexes: Characterization of conformational changes by rapid [perturbant] upshift experiments. J Mol Biol 376:1034–1047.