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Noise Clustering Based onMixture Gaussian.To group together genes
with similar expression noise level, we used a generative model to
learn the inherent noise structure. Briefly, at step (1), we modeled
the noise distribution with Gaussian mixtures, whose parameters
were automatically learned by the expectation-maximization al-
gorithm. At step (2), the number of Gaussian components, K ,
was determined by minimizing Bayesian information criterion
(or Schwarz criterion, BIC) in our model selection. By varying
K ¼ 1 to 10, we found BIC reaches the minimal when K ¼ 7.
At step (3), to unambiguously assign each gene into one of the
seven noise clusters, we took a Bayesian approach to calculate
the posterior probability for each gene to belong to each of
the seven noise clusters; we then assigned the gene to the cluster
with the highest posterior probability. We noted that this algo-
rithm is purely based on the intrinsic noise structure and also
guarantees that genes with similar expression noise are grouped
together.

Calculating Clustering Coefficient C. The local clustering coefficient
of a vertex in a network reflects the possibility of the vertex within
a clique formed by its immediate interacting partners. For the ith
node with Ki immediate neighbors in an undirected network, its
clustering coefficient Ci is defined as the following (1):
Ci ¼ 2jfejkgj

KiðKi−1Þ, where jfejkgj represents the total number of edges
between its Ki neighbors.

The above clustering coefficients were defined in the un-
directed networks (1), such as the protein interaction networks;
in the gene regulatory network which is a directed network, we
followed a generalized definition proposed in ref. 2.

Calculating Modularity Index Q. We adopted Newman’s approach
to calculate network modularity Q (3). Given an undirected net-
work defined by the adjacency matrix A, where Aij ¼ 1 if node i
and j have an edge while Aij ¼ 0 if node i has no connection with
node j. For any partition of the network into two modules, the
modularity index Q of the partition can be defined as

Q ¼ Q ¼ 1

4m
sTBs; where Bi;j ¼ Ai;j −

kikj
2m

:

In the above equation, S is a vector whose element si ¼ 1 indi-
cates the node i belongs to module 1 while si ¼ −1 for the node
i classified into module 2. ki;kj… is the network degree of node i

and j; m ¼ ΣijAij

2
. In our analysis clustering coefficients in protein

interaction networks and the gene regulatory network were cal-
culated using GAIMC toolbox implemented in MATLAB, and
betweenness in protein interaction networks were calculated
based on the Graph module in Perl.

Automated Image Acquisition. Yeast cells expressing GFP fusion
chimeras were grown in YEPDmedia overnight in 96-well format
deep-well blocks and subcultured for 5 hours in prewarmed fresh
media to obtain cells in log phase. Cells were then resuspended in
low fluorescent media and distributed in 96-well glass bottomed
plates (MMI Greiner M plates). An ImageXpress 5000A fluor-
escence microscopy system from Molecular Devices was used
to acquire images. Images were acquired at room temperature
for two hours.

Automated image quantification.Automated image acquisition and
analysis were performed with MetaXpress software, v1.63
(Molecular Devices). After images were shade-corrected and
background-subtracted, objects were segmented and single cells
were defined using background cell fluorescence in the GFP
channel. We used a series of MetaXpress modules to segment
whole cells. Once cells were identified, dead cells were removed
from further analysis by gating average-grayscale as they had high
autofluorescence. A minimal set of features (dimension, shape
factor, and elliptical form factor) was used to train the software
to efficiently classify an unseen image into two categories such as
budded and unbudded cells. Each budded or unbudded cell was
taken as a region of interest, and the dimension and intensity
profiles of each region of interest were quantified individually
for each cell.
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Fig. S1. (A) The learned mixture Gaussian model that best fits the distribution of expression noise among the yeast proteins. Yeast genes are assigned to one
of the seven Gaussian components based on its maximal Bayesian posterior probability. To provide enough and balanced datasets in the SVM prediction
experiments (described in the latter part of the manuscript), the two quietest gene clusters (level 1–2) are grouped as “low-noise,” the noisiest clusters (level
5–7) are grouped as “high-noise,” and the intermediate levels (level 3–4) are grouped as “mid-noise”. (B) The number of genes in each of the seven noise
clusters. Also shown is the availability of protein–protein interactions, Ka/Ks values, and fitness data for genes in each cluster.
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Fig. S2. Yeast proteins with the highest expression noise (level 7) are under the strongest selective pressure on their coding sequences. (A) The mean
evolutionary rate of genes at each noise level. Error bars represent one standard error. (B) The statistical significance of pairwise comparison of selective
pressure (Ka/Ks) between any two noise levels. Clearly genes at noise level 7 have the lowest Ka and Ka/Ks. Statistically significant pairwise comparisons
between two noise levels are highlighted in black; we used the Wilcoxson rank sum test. (C) The cumulative density functions for the Ka/Ks distribution
for genes in the noise levels 1, 4, and 7. Clearly the extremely noisy genes (level 7, the highest curve, blue color) have the lowest Ka/Ks whereas genes with
the intermediate noise level (level 4, the lowest curve, green color) have the highest Ka/Ks.
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Fig. S3. Interaction partners of quiet proteins tend to be quiet and interaction partners of noisy proteins tend to be noisy too. Error bars represent one
standard error.

Fig. S4. (A) Comparison of cumulative density functions of expression noise between transcription factors (TFs) and target genes (TGs). Clearly TFs have
reduced noise than TGs. (B) TFs have lower mean expression noise than TGs (P ¼ 1.6 × 10−3, Wilcoxon rank sum test). Error bars represent one standard error.
(C) TGs with increased expression noise tend to be regulated by more TFs (R ¼ 0.18, P ¼ 1.14 × 10−12, Pearson’s correlation, and R ¼ 0.17, P ¼ 1.54 × 10−11,
Spearman’s correlation). Error bars represent one standard error.
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Fig. S5. Prediction accuracy of the individual topological features in the protein–protein interaction networks and the gene regulatory network. Because only
TFs in GRN have outgoing edges, the prediction accuracy by out-degree in the GRN only applies to TFs. CC: clustering coefficient.

Fig. S6. Schematic diagram of the support vector machine (SVM) algorithm. The SVM is trained on the noisy genes (red circles) and quiet genes (blue circles); a
hyperplane is determined that can best separate these two groups of training genes in the induced kernel space of high dimension. For a gene of unknown
noise, its noise can be quantified by the S score, reflecting the distance of the gene to the hyperplane.
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Fig. S7. Fluctuation of fluorescence intensities for three heat-shock proteins in the microscopic assay.

Fig. S8. Yeast cells with GFP fused proteins have reduced noise are shown on top, whereas yeast cells with elevated noise are shown at the bottom. Cells in the
same image and between images all have comparable extrinsic characteristics. Expression noise of the gene in red had not been previously measured. The bar
chart indicates the boot-strapped noise median and its associated standard error estimated from the entire cell population of the corresponding sites for each
gene. (A) Comparison between RAD23 and UTH1. (B) Comparison between RPS11A, GRE2, HOR2, TSA2, and UBI4. (C) Comparison between RPS11A and PDC6.
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