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Here we describe an open reading frame (LMW23-NL) in the African swine fever virus genome that
possesses striking similarity to a murine myeloid differentiation primary response gene (MyD116) and the
neurovirulence-associated gene (ICP34.5) of herpes simplex virus. In all three proteins, a centrally located
acidic region precedes a highly conserved, hydrophilic 56-amino-acid domain located at the carboxy terminus.
LMW23-NL predicts a highly basic protein of 184 amino acids with an estimated molecular mass of 21.3 kDa.
The similarity of LMW23-NL to genes involved in myeloid cell differentiation and viral host range suggests a
role for it in African swine fever virus host range.

African swine fever virus (ASFV) is a large icosahedral
arbovirus which contains a linear double-stranded DNA
genome of 170 to 190 kb and which replicates in the
cytoplasm of infected cells (10, 41). It is the causative agent
of African swine fever (ASF), a highly significant disease of
domestic swine. ASF occurs in several disease forms, rang-
ing from highly lethal infections to subclinical ones, depend-
ing on contributing viral and host factors. In the acute or
highly virulent form of the disease, the course is short (8 to
10 days) and mortality rates approach 100% (30). Cells of the
mononuclear-phagocytic system are major targets for ASFV
replication in vivo; viral infections with extensive necrosis of
fixed macrophages of the spleen, lymph node, lung, and liver
as well as specific lineages of reticular cells are evident
following infection with highly virulent virus isolates (8, 12,
20, 29, 30, 32). Strains of ASFV exhibiting moderate viru-
lence also infect these cell types, but the degree of tissue
involvement and the resulting damage are much less severe
(29, 30). Thus, the abilities of ASFV to replicate efficiently
and to induce marked cytopathology in these cell types in
vivo appear to be critical factors in ASFV virulence. The
nature of the virus-cell host interactions responsible for the
differing outcomes of infection with highly virulent, moder-
ately virulent, or avirulent ASFV strains is unknown. Here
we describe an ASFV gene, LMW23-NL, that possesses
significant similarity to a murine myeloid differentiation
primary response gene (MyD116) and the neurovirulence-
associated gene (ICP34.5) of herpes simplex virus (HSV).
The similarity of LMW23-NL to genes involved in myeloid
cell differentiation and viral host range suggests a possible
role for it in ASFV host range.
The 11-kb Sall fragment L of the virulent ASFV strain

Malawi Lil-20/1 genome (13), which maps near the right
terminus of the genome, was subcloned and sequenced in its
entirety by a random sequencing strategy employing the
dideoxy-chain termination method and an ABI 370A auto-
mated DNA sequencer (3, 36). Random sequences were
assembled by using the computer programs of Staden (39).
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Sequences from both strands were obtained for the entire
LMW23-NL gene region.
LMW23-NL, an open reading frame (ORF) of 551 bp,

begins at position 9828 and ends at position 9277 on the
negative strand of the 11,009-bp fragment (Fig. 1). Codon
usage bias in an uninterrupted stretch of 128 codons (70% of
coding region) coincides with the codon frequency for
known ASFV genes that code for p37 (an early structural
protein [23]), thymidine kinase (4), p22 (an early structural
protein [16]), and p72 (a late structural protein [22]), thus
indicating a 99% probability that LMW23-NL codes for
protein over this region (38). In addition, transcription from
the LMW23-NL ORF was detectable in ASFV-infected
porcine macrophages early after infection (Fig. 2). The
sequence motif TAAATG, which includes the start codon of
the ORF, resembles efficient vaccinia virus late promoters
(11, 31). Whether it functions as a promoter here is un-
known; however, it has been shown that ASFV and vaccinia
virus, the type member of the family Orthopoxviridae, are
able to utilize each other's promoters (17, 41).
The protein predicted by LMW23-NL is 184 amino acids

in length, is hydrophilic in nature (21), and has an isoelectric
point of 9.23 and a molecular mass of 21.3 kDa. No evidence
for a signal sequence or membrane-spanning regions within
the protein was found (42). A search of the Prosite data base
(release 7.1) (2) identified six consensus protein kinase C
phosphorylation motifs at amino acids 2, 8, 40, 82, 115, and
165 (43); three casein kinase phosphorylation motifs at
residues 27, 63, and 107 (34); one tyrosine kinase phosphor-
ylation sequence at residue 126 (9); and one potential Asn
glycosylation site at residue 93 within the sequence (27).
FASTA (33) searching of GenBank (release 69.0),

Swissprot (release 19.0), and PIR (release 7.0) data bases, as
well as BLAST searches of the latter two protein data bases,
revealed a striking similarity between LMW23-NL, a my-
eloid differentiation primary response gene, MyD116 (25),
and the neurovirulence-associated protein (ICP34.5) of HSV
(6, 7).
Although differing in size, all three proteins contain a

centrally located acidic region with a highly conserved,
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FIG. 1. Nucleotide sequence of ASFV ORF LMW23-NL. LMW23-NL, depicted as a hatched rectangle labeled NL, is located at the
right-hand end of the 173-kb ASFV (Malawi Lil-20/1) genome on the 11-kb SalI fragment L (13). An arrow depicts the orientation of the gene.

The nucleotide sequence of the coding strand of LMW23-NL is shown here (the coding strand is the negative strand). The numbering is
consistent with the location of the gene on the Sall fragment L (LMW23-13). The deduced amino acid sequence is shown beneath the
nucleotide sequence in the one-letter amino acid code.

hydrophilic 56-amino-acid domain located at the carboxy
terminus (Fig. 3). In addition, LMW23-NL and ICP34.5 both
contain a highly basic amino terminus composed of 8 to 10
lysine and arginine residues. In the conserved domain of
LMW23-NL (amino acids 118 to 173), there are 25 exact
matches and 19 conservative matches with MyD116, which

Control Infected
DNase

DNase/RNase

FIG. 2. LMW23-NL is transcribed in ASFV-infected porcine
macrophages. Macrophage cultures were infected with ASFV

(Malawi Lil-20/1) (multiplicity of infection, 20) and harvested at 2 h

postinfection (1, 15). Total cell RNA was prepared as previously
described (5). RNA samples (10 jig) were treated with either DNase
I (1 pg/ml) or DNase I and RNase A (1 p,g/ml), blotted to a nylon
membrane, and hybridized at high stringency (0.5 M Na2H2PO4 [pH
7.2], 1% bovine serum albumin, 1 mM EDTA, 7% sodium dodecyl
sulfate 65°C) with a single-stranded 32P-labeled DNA probe comple-
mentary to the entire LMW23-NL coding region (19, 35). A mock-

infected control culture was treated in an identical manner.

corresponds to 78% overall conservation with 44% identity
(based on the Dayhoff Pam-250 symbol comparison table
with a 0.5 cutoff [37]). In the same region, comparison of
LMW23-NL to HSV ICP34.5 reveals 55% overall conserva-

tion and 30% identity. Apart from the sequence similarities
noted above, the gene sequences are dissimilar.

Recently, McGeoch and Barnett have reported the simi-
larity between MyD116 and HSV ICP34.5 (28). LMW23-NL
represents an additional viral gene belonging to this increas-
ingly interesting group. The HSV ICP34.5 gene, although
nonessential for growth in cell culture, is strongly associated
with HSV neurovirulence in mice and appears to be a host
range gene required for viral replication and virulence in
fully differentiated neural tissue (6, 7, 40).
MyD116, a murine myeloid differentiation primary re-

sponse gene, is expressed in leukemic myeloblasts immedi-
ately following induced differentiation with interleukin-6 or

granulocyte/macrophage colony-stimulating factor and is
expressed at high levels in terminally differentiated cells of
the myeloid lineage. The function of MyD116 is unknown;
however, because it is expressed early in cellular differenti-
ation and in terminally differentiated cells, it may be in-

volved in regulating the differentiation process or in main-
taining the differentiated state in myeloid cells (24, 25).
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hsvl 186 tpatpaRVrFsphvrvrhLV.VWasAArVARaGsWareraDRaRFrRRVAEaEaVIGPcLGpeararalar 255
hsv2 166 .......VclsTrvqvrhLV.AWetAArVARaGsWareraDRdPRrRRVAaaEaVVGPcLepearararar 229

mydll6 541 IPlKArKVHFAEKvTvhfLa.VWaGPAQaARRGPWEQfArDRsRFARRIAQAEekLGPyLtpdsrarawar 611
lmw23nl 118 IRqRDvXVFATDdI... LIkVR.EADDIDRKGPWEQaAVDR1RFQRRIADTEkILSAvLlrkklnpmehe 184
FIG. 3. Conserved carboxy-terminal domains of LMW23-NL, MyD116, and HSV ICP34.5. The sequences shown are ICP34.5 from HSV

type 1 (6, 7), the ICP34.5 homolog from HSV type 2 (28), MyD116 (25), and ASFV ORF LMW23-NL. Residues identical to LMW23-NL are
shown as uppercase bold letters, while conservative amino acid substitutions are indicated by uppercase letters. The numbering of
LMW23-NL is consistent with the amino acid sequence shown in Fig. 1. The other proteins are numbered as they appear in the citations.

Interestingly, ASFV targets differentiated cells of the
mononuclear-phagocytic system. Viral pathogenesis studies
indicate that fully differentiated tissue macrophages and
reticular cells are major viral targets in vivo (8, 12, 20, 29, 30,
32). In addition, macrophages, obtained from peripheral
blood following differentiation of blood monocytes in cul-
ture, are highly susceptible to ASFV infection in vitro (14,
18, 26). Although the function of LMW23-NL in ASFV
infection is unknown, its similarity with genes involved in
myeloid cell differentiation and viral host range suggests a

possible role for it in ASFV host range. It is tempting to
speculate that LMW23-NL's function may involve regula-
tion or manipulation of monocyte/macrophage differentia-
tion states in such a way that it increases cell permissiveness
to viral infection.

Nucleotide sequence accession number. The GenBank ac-
cession number for LMW23-NL (Fig. 1) is M95672.
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