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Materials and Methods 

Carbon Nanotube Growth: 

Vertically aligned carbon nanotubes (VANTs) were grown by chemical vapor deposition 

(1) on Silicon substrates with ~1.5 nm Fe on 10 nm Al2O3 as a catalyst system.  The substrates 

were loaded into a 1” Linderberg/Blue M Mini-Mite Tube Furnace, heated to 450 °C under 200 

standard cubic centimeters per minute (sccm) nitrogen, soaked in a reducing atmosphere 

(hydrogen 40 sccm: nitrogen 200 sccm) for 5 minutes, and then heated to 750 °C.  Ethylene (40 

sccm) was introduced for 30 minutes along with 2 sccm of water saturated nitrogen.  VANTs 

were characterized with scanning electron microscopy (SEM) conducted with a FEI Sirion XL30 

SEM.  The VANTs were hundreds of microns tall with average diameters of ~10 nm.   

 

Composite Production: 

To maintain the roughness necessary for the high absorptivity and superhydrophobicity, 

composites were prepared by contact curing PDMS (Slygard 184 Silicone Elastomer Kit) on 

VANT substrates preheated to 200 °C.  This prevented the PDMS from fully impregnating the 

VANT substrate and left the bottom ends of the nanotubes exposed.  The embedded forests 

emerge from the PDMS by ~100 µm (SI Fig. 2) and are stable to solvents and mild mechanical 

pressure.  Surface contact angles were measured on a Krüss Model G10 goniometer at room 

temperature and ambient relative humidity using 18MΩ water according to the sessile drop 

method.  Composites can be cut to any desired shape.   

Alternative light absorbing materials such as homogenous carbon black-PDMS and 

MWNT-PDMS composites were made by thoroughly mixing the absorbing material (1-5 wt. %) 

with PDMS and curing at 100 ºC in a box furnace for 2 hours.   

 

Composite Testing: 

 Laser induced heating of composites was tested by embedding a thermocouple in the 

PDMS support, close to the back of the VANT.  Collimated laser irradiation was used to observe 

the temperature change.  This gave an estimate of the temperature change in air at 150 °C.   This 

is likely a lower limit as the thermocouple was not placed directly at the interface to avoid direct 

heating of the probe.  A temperature change as a result of the direct irradiation of the 

thermocouple was eliminated as no change in temperature was found when the thermocouple 

was placed behind, but not touching, the composite under illumination.  

The composites were floated on various liquids including deionized water, brine, 

fluorinert® FC-75, DMF, glycerol and irradiated with either focused sunlight using a Fresnel 

lens (Fresnel Tech, Inc), glass lens or a near-IR diode laser (450mW B&W Tek, Inc 785-
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450E/55371).  Illumination conditions varied, though motion was typically tested with the object 

near the focal point and roughly 5-20 cm away.  Speed tests were performed in an aluminum 

trough filled with the appropriate liquid.  Both continuous illumination and single pulse 

illumination experiments were undertaken.  Objects tested ranged from 20 mg to 25 g and <1 

mm to multiple centimeters and showed light responses.  Resulting motion was recorded using a 

Casio Exlim Pro EX-F1 at 30-1200 frames per second (fps).  Motion typically began within 0.1 s 

of illumination.  For heavy composites a qualitatively longer lag was observed but not quantified. 

Force values were determined by evaluating the recorded motion of the composites using 

ImageJ
2
 software with Manual Tracking to determine the location of the object at each time 

point.  With this location and time information Igor Pro 6.04 was used to perform the fit.  To 

determine the force associated with constant illumination we began with the net force equation: 
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where Fnet is the net force, FL is the force due to the light based modulation of the surface 

tension, m is the mass of the composite, R is defined from the drag equation as in (2): v is the 

velocity, a is the acceleration, ρ is the density of the solution, A is the displaced area, and CD is 

the drag coefficient.  Integrating equation 1 twice gives the location as a function of time 

(equation 3): 
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where X is the location, and to, and D are integration constants.  A typical location vs. time plot 

with fit is shown in Fig. S4.   

 Temperature changes were calculated from the force measurements using the temperature 

dependence of the surface tension.  For instance, the temperature dependence of the surface 

tension for water is ~1.8 µN/cm K.  If the absorber has an absorbing face of 0.2 cm and the 

derived force is 10 µN, one obtains a change in temperature of ~28 K as shown in equation 4: 
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Control experiments:  
A) Illumination of pristine (transparent) PDMS, MWNT-PDMS, and carbon black-PDMS 

Pristine PDMS was found to have no response to laser illumination. MWNT (0.1, 1, and 

5 wt. %)-PDMS composites were compared with a VANT-PDMS composite.  All composites 

had masses of ~250mg.  To control for the fact that the dispersed composites can absorb 

throughout the entire object, larger composites were used so the collimated laser beam would 

only heat the back face of the object.  Forces of 1.0±0.1 µN, 1.9±0.3 µN, 2.2±0.3 µN, 2.9±0.9 

µN were obtained for 0.1, 1, 5 wt. % and VANT-PDMS composites respectively under constant, 

collimated illumination.  It should be noted that latent heat of the objects, after testing, causes 

them to continue to be propelled forward.  This is more obvious with the dispersed composites, 
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which absorb throughout the material, then with the VANT-PDMS composites.  This suggests 

that the VANT-PDMS composites transfer heat more effectively to their surroundings then the 

dispersed composite.   

The ability to select the face that is illuminated in order to enact control is an advantage 

of the dispersed composites (as described in Fig S1 and in Movie_S3). It is notable that since the 

absorbing material is only on one face of the VANT-PDMS composites (i.e. the back of the 

boat), absorption and forward propulsion can still be achieved with frontal laser irradiation, as 

the laser beam can pass through the transparent PDMS.  This result suggests that radiation 

pressure from the incident light is not the dominant force.   

 

B) Surfactant effect 

To test surfactant effects on the light controlled motion of objects, VANT-PDMS 

composites (3 mm x 10 mm x 1 mm) were floated on water in an aluminum trough (64 cm x 3.3 

cm x 1.5 cm) and irradiated with nIR laser light to verify light induced motion. Sodium dodecyl 

sulfate (~70 mg) was dropped onto the surface of the solution and allowed to dissolve (~0.5 

min).  The composite was then irradiated with nIR light.  No motion was observed even under 

the highest focus, as shown in Figure S5.  When laser light was highly focused, bubbles formed 

as the water locally boiled, a phenomenon not observed when in pure water.  If an intermediate 

amount of surfactant was used (~30 mg), light induced motion was retarded but not completely 

eliminated for highly focused irradiation.  

 

 

Solvent Comparison: 

 To test the effect of the liquid on the light controlled motion of objects, VANT-PDMS 

composites (3 mm x 10 mm x 1mm, 36.2mg) were floated on water, isopropyl alcohol, or DMF 

and the response was quantified. Small composites were used so as not to break the surface 

tension (particularly for the IPA) holding the object above the surface.  The objects were then 

irradiated with nIR laser light at an angle of 45º and the motion recorded. In order to control 

illumination intensity, constant, collimated laser conditions with a spot size of ~4.5 mm were 

used.  Forces were determined as described above.  In water, forces of 1.19 ±0.36 µN were 

observed over seven measurements, error is reported as plus or minus one standard deviation.  In 

isopropyl alcohol, forces of 0.23±0.12 µN were observed over five measurements.  In DMF, 

forces of 0.13±0.03 µN were observed.  The forces correlate to temperature changes of 2.9 ºC for 

the water system and 0.96 ºC for the isopropyl alcohol system. Motion was also observed on  

fluorinert® FC-75, brine, glycerol, or at the boundary between water and fluorinert®, but the 

forces were not quantified. 
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Supplementary Figures and Legends 1-3: 

 
Figure S1. Basic scheme for the application of opto-thermal surface tension gradients to the 

motion of objects on liquids.  Controlled linear motion can be obtained from VANT-PDMS 

composites or dispersed carbon black or carbon nanotube PDMS composites (center).  Surface 

tension forces are depicted as either black arrows (unheated) or red arrows (heated and thus of 

diminished magnitude). Left panel, top view optical images of a dispersed MWNT-PDMS 

composite.  Selective placement of focused light heats one region of the object, resulting in a 

local decrease in the surface tension.  This causes the object to be pulled away from the heat.  

Motion can be controlled by selecting the face of the object that is heated (left top and middle), 

or by selecting the region of a specific face (left bottom).  Further evidence is shown in 

supplemental videos (Movie_S2_Controlled_Linear_VNTPDMS.mov and 

Movie_S3_MWNTPDMS_Sunlight.mov).  This principle can be extended to device design 

(upper right).  Rotors can be made with light absorbing VANTs selectively placed on the 

clockwise face of each fin.  When optical heating occurs, the surface tension gradients are 

focused near the light-absorbing material resulting in asymmetric forces and rotation, as shown 

here schematically and in video form in the SI (Movie_S4_Sun_Rotor.mov).  The videos show 

both Sunlight and Laser powered motion.   
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Figure S2.  Characteristic contact angle images for VANT-PDMS composites.  Droplets quickly 

roll off the substrate if not attached to the needle.  Contact angles are consistently >155º.  

Droplets bounce off the surface when dropped from a distance.  Pinning only occurs at defect 

sites.   

 

 
Figure S3.  Depicts the motion induced by the continuous irradiation of a VANT-PDMS 

composite with 450 mW of 785 nm laser light.  The location data and fit with fit parameters are 

shown.  For the fit, m is in grams, R is in grams/cm, to is in seconds, Fl is in 10 µN, and C is in 

cm.  In this case, the force on the object was roughly 16.5 µN.   
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 Supplemental Movies: 

 

Movie_S1_Linear_Motion.mov:  Linear motion of a VANT-PDMS object floating on water 

under laser irradiation.  Motion begins slowly and speeds up as the composite approaches the 

focal point of the laser.  After passing through the focal point illumination is terminated. 

 

Movie_S2_Controlled_Linear_VNTPDMS.mov:  Controlled linear motion of a VANT-PDMS 

object floating on water under constant laser irradiation.  Object is controllably moved to the 

right, turned around in a circle, and then moved to the left. 

 

Movie_S3_MWNTPDMS_Sunlight.mov:  Sunlight controlled motion of a dispersed MWNT-

PDMS composite floating on water.  Object is moved from left to right and then back again 

using a simple glass lens. 

 

Movie_S4_Sun_Rotor.mov:  Sunlight powered VANT-PDMS rotor.  Rotor starts at rest and 

when illuminated with focused sunlight speeds up to ~70 rpm.   
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