Intermolecular Hydroamination of Ethylene and 1-Alkenes with Cyclic Ureas Catalyzed by Achiral and Chiral Gold(I) Complexes

Zhibin Zhang, Seong Du Lee, and Ross A. Widenhoefer*

Duke University

French Family Science Center

Durham, NC 27708-0346

rwidenho@chem.duke.edu

Experimental procedures, spectroscopic and analytical data, and scans of ¹H and ¹³C NMR spectra for new compounds and scans of HPLC traces for enantiomerically enriched cyclic ureas (65 pages).

General Methods

Reactions were performed under a nitrogen atmosphere employing standard Schlenk and/or drybox techniques unless specified otherwise. NMR spectra were obtained on Varian spectrometers operating at 400 MHz for ¹H NMR and 101 MHz for ¹³C NMR in CDCl₃ at 25 °C unless noted otherwise. IR spectra were obtained on a Nicolet Avatar 360-FT IR spectrometer. Gas chromatography was performed on a Hewlett-Packard 5890 gas chromatography equipped with a 15 m or 25 m polydimethylsiloxane capillary column and FID detector. Chiral HPLC was performed on a Hewlett-Parkard chromatograph equipped with a 0.46 cm × 25 cm Chiralpak AD-H column. Column chromatography was performed employing 230-400 mesh silica gel (Silicycle). Thin laver chromatography (TLC) was performed on silica gel 60 F₂₅₄ (EMD Chemicals Inc.). Elemental analyses were performed by Complete Analysis Laboratories (Parsippany, NJ). Room temperature is 23 °C. Catalytic reactions were performed in sealed heavy-walled pressure tubes under an atmosphere of dry nitrogen unless noted otherwise. Pressurized reactions were performed behind a blast shield in a heavy-walled pressure tube equipped with a pressure gauge and a valve that allowed the pressure of the tube to be controlled throughout the transformation.

All solvents were purchased from Aldrich or Acros in anhydrous form and used as received. All reagents and ligands, and gold salts were purchased from major suppliers and used as received. Gold complexes (**2a**)AuCl, (**2b**)AuCl, and (**L1**)AuCl-(**L3**)AuCl were prepared employing published procedures.^{S1} Chiral bis(gold) phosphine complexes $[(S)-4](AuCl)_2$ and $[(S)-L3](AuCl)_2 - [(S)-L7](AuCl)_2$ were synthesized employing the method of Echavarren.^{S2}

Part I: Hydroamination Employing Achiral Catalysts

Gold Complex (2b)AuCl. ¹H NMR: δ 8.21 (d, *J* = 8.4 Hz, 1 H), 8.02-7.95 (m, 3 H), 7.91 (d, *J* = 7.6 Hz, 1 H), 7.57 (dd, *J* = 6.8, 8.4 Hz, 1 H), 7.52 (dt, *J* = 0.8, 6.8 Hz, 1 H), 7.45 (dt, *J* = 1.2, 6.8 Hz, 1 H), 7.31 (dd, *J* = 0.8, 6.8 Hz, 1 H), 7.23-7.18 (m, 2 H), 6.96 (d, *J* = 8.4 Hz, 1 H), 6.92 (d, *J* = 8.4 Hz, 1

H), 1.44 (d, J = 15.6 Hz, 9 H), 1.41 (d, J = 15.6 Hz, 9 H). ³¹P NMR: δ 63.1. ¹³C{¹H} NMR: δ 148.0, 147.8, 136.35, 136.27, 134.8, 134.7, 134.4, 134.2, 134.1, 133.6, 129.7, 129.5, 129.4, 128.91, 128.88, 128.7, 128.6, 128.3, 127.8, 127.5, 127.4, 127.21, 127.19, 126.3, 126.2, 126.1, 125.7, 125.3, 125.0, 38.4, 38.19, 38.16, 37.9, 31.9, 31.8, 31.0, 30.9. HRMS calcd (found) for C₂₈H₃₁AuClP (M⁺): 630.1517 (630.1514).

Hydroamination with gaseous alkenes

1-Ethyl-3-methylimidazolidin-2-one (3). A suspension of (**2b**)AuCl (6.3 mg, 0.010 mmol), AgSbF₆ (3.4 mg, 0.010 mmol), and **1** (20.0 mg, 0.20 mmol) in dioxane (0.5 mL) in a pressure tube was evacuated via a freeze-pump-thaw cycle, pressurized with ethylene (60 psi), and heated at 60 °C for 24 h at constant ethylene pressure. The tube was cooled to room temperature, depressurized, and the crude reaction mixture was chromatographed (hexanes–EtOAc = 1:1 → 1:5) to give **3** (25.2 mg, 99%) as a colorless oil. TLC (EtOAc): R_f = 0.23. ¹H NMR (Figure S1): δ 3.19 (s, 4 H), 3.15 (q, *J* = 7.2 Hz, 2 H), 2.69 (s, 3 H), 1.01 (t, *J* = 7.2 Hz, 3 H). ¹³C{¹H} NMR (Figure S2): δ 161.8, 45.3, 42.0, 38.9, 31.5, 12.8. IR (neat, cm⁻¹): 2978, 2861, 1679, 1499, 1439, 1404, 1277, 1256, 760. HRMS calcd (found) for $C_6H_{12}N_2O$ (M⁺): 128.0950 (128.0948).

All remaining intermolecular hydroamination reactions employing gaseous alkenes were performed employing a procedure analogous to that used to synthesize **3** employing the catalyst mixture and conditions outlined in Tables 1 or 2.

1-tert-Butyl-3-ethylimidazolidin-2-one (Table 1, entry 5). Colorless oil, 80%. TLC (hexane– EtOAc = 1:1): $R_f = 0.47$. ¹H NMR: δ 3.26-3.22 (m, 2 H), 3.14-3.10 (m, 2 H), 3.13 (q, J = 7.2 Hz, 2 H), 1.29 (s, 9 H), 1.03 (t, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR: δ 161.7, 53.1, 41.9, 40.9, 38.8, 27.6, 12.8. IR (neat, cm⁻¹): 2973, 2869, 1685, 1485, 1419, 1269, 1249, 1227, 765. HRMS calcd (found) for $C_9H_{18}N_2O$ (M⁺): 170.1419 (170.1421).

3-Ethyloxazolidin-2-one (Table 1, entry 6).^{S3} Colorless oil, 75%. TLC (EtOAc): $R_f = 0.38$. ¹H NMR (Figure S3): δ 4.27-4.23 (m, 2 H), 3.52-3.48 (m, 2 H), 3.26 (q, J = 7.2 Hz, 2 H), 1.10 (t, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (Figure S4): δ 158.4, 61.8, 44.1, 39.0, 12.7. IR (neat, cm⁻¹): 2983, 2833, 1754, 1489, 1385, 1278, 1221, 1103, 699. HRMS calcd (found) for C₅H₉NO₂ (M⁺): 115.0633 (115.0634).

1,3-Diethylimidazolidin-2-one (Table 1, entry 7).^{S4} Colorless oil, 95%. TLC (hexanes–EtOAc = 1:1): $R_f = 0.23$. ¹H NMR (Figure S5): δ 3.23 (s, 4 H), 3.19 (q, J = 7.2 Hz, 4 H), 1.05 (t, J = 7.2 Hz, 6 H). ¹³C{¹H} NMR (Figure S6): δ 161.3, 42.3, 38.9, 12.9. IR (neat, cm⁻¹): 2973, 2933, 1677, 1492, 1433, 1379, 1356, 1259, 759, 644. HRMS calcd (found) for C₇H₁₄N₂O (M⁺): 142.1106 (142.1107).

1,3-Diisopropylimidazolidin-2-one (Table 1, entry 8). Colorless oil, 85%. TLC (hexanes–EtOAc = 1:1): $R_f = 0.30$. ¹H NMR (Figure S7): δ 4.08 (septet, J = 6.8 Hz, 2 H), 3.16 (s, 4 H), 1.05 (d, J = 6.8 Hz, 12 H). ¹³C{¹H} NMR (Figure S8): δ 160.3, 43.5, 37.4, 19.6. IR (neat, cm⁻¹): 2974, 2934, 1664, 1491, 1439, 1274, 1222, 1124, 1100, 761. HRMS calcd (found) for C₉H₁₈N₂O (M⁺): 170.1419 (170.1419).

1,3-di-sec-Butylimidazolidin-2-one (Table 1, entry 9). Colorless oil, 86%, dr = 1:1. TLC (hexanes–EtOAc = 5:1): $R_f = 0.14$. ¹H NMR (Figure S9): δ 3.83-3.73 (m, 2 H), 3.16-3.05 (m, 4 H), 1.43-1.27 (m, 4 H), 0.99-0.96 (m, 6 H), 0.80-0.75 (m, 6 H). ¹³C{¹H} NMR (Figure S10): δ 160.9, 160.8, 49.1, 49.0, 37.3, 37.2, 27.1, 27.0, 17.6, 17.3, 11.1, 11.0. IR (neat, cm⁻¹): 3199, 2965, 2874, 1669, 1489, 1429, 1260, 1212, 757. HRMS calcd (found) for C₁₁H₂₂N₂O (M⁺): 198.1732 (198.1734).

1,3-Diethyl-tetrahydropyrimidin-2(1*H***)-one (Table 1, entry 10).** Colorless oil, 98%. TLC (EtOAc): $R_f = 0.23$. ¹H NMR (Figure S11): δ 3.29 (q, J = 7.2 Hz, 4 H), 3.15 (t, J = 6.0 Hz, 4 H), 1.86 (quintet, J = 6.0 Hz, 2 H), 1.01 (t, J = 7.2 Hz, 6 H). ¹³C{¹H} NMR (Figure S12): δ 155.6, 45.1, 42.6, 22.5, 13.0. IR (neat, cm⁻¹): 2971, 2932, 2869, 1609, 1511, 1441, 1290, 1213, 1081, 753. HRMS calcd (found) for C₈H₁₆N₂O (M⁺): 156.1263 (156.1260).

1,3-Diisopropyl-tetrahydropyrimidin-2(1*H***)-one (Table 1, entry 11).** Colorless oil, 86%. TLC (hexanes–EtOAc = 1:1): $R_f = 0.27$. ¹H NMR (Figure S13): δ 4.69 (septet, J = 6.8 Hz, 2 H), 3.02 (t, J = 6.0 Hz, 4 H), 1.79 (quintet, J = 6.0 Hz, 2 H), 1.00 (d, J = 6.8 Hz, 12 H). ¹³C{¹H} NMR (Figure S14): δ 155.2, 44.7, 38.3, 22.8, 19.8. IR (neat, cm⁻¹): 2956, 2871, 1603, 1497, 1439, 1303, 1207, 1091, 669. HRMS calcd (found) for C₁₀H₂₀N₂O (M⁺): 184.1576 (184.1573).

1-IsopropyI-3-methylimidazolidin-2-one (Table 2, entry 2). Colorless oil, 98%. TLC (EtOAc): $R_f = 0.23.$ ¹H NMR (Figure S15): δ 4.05 (septet, J = 6.8 Hz, 1 H), 3.18-3.16 (m, 4 H), 2.69 (s, 3 H), 1.03 (d, J = 6.8 Hz, 6 H). ¹³C{¹H} NMR (Figure S16): δ 161.2, 45.5, 43.7, 37.1, 31.5, 19.6. IR (neat, cm⁻¹): 2970, 2873, 1678, 1496, 1436, 1402, 1365, 1280, 1257, 760. HRMS calcd (found) for C₇H₁₄N₂O (M⁺): 142.1106 (142.1102).

1-sec-Butyl-3-methylimidazolidin-2-one (Table 2, entry 3). Colorless oil, 96%. TLC (hexane-EtOAc = 1:1): $R_f = 0.16$. ¹H NMR (Figure S17): δ 3.79 (sextet, J = 6.8 Hz, 1 H), 3.22-3.07 (m, 4 H), 2.70 (s, 3 H), 1.45-1.30 (m, 2 H), 1.01 (d, J = 6.8 Hz, 3 H), 0.80 (t, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (Figure S18): δ 161.6, 49.4, 45.6, 37.1, 31.6, 27.1, 17.6, 11.2. IR (neat, cm⁻¹): 2965, 2874, 1680, 1496, 1436, 1402, 1353, 1279, 1255, 761. HRMS calcd (found) for C₈H₁₆N₂O (M⁺): 156.1263 (156.1265).

1-*tert*-Butyl-3-methylimidazolidin-2-one (Table 2, entry 10). Colorless oil, 72%. TLC (hexanes–EtOAc = 1:1): $R_f = 0.28$. ¹H NMR (Figure S19): δ 3.28-3.24 (m, 2 H), 3.16-3.12 (m, 2 H), 2.70 (s, 3 H), 1.31 (s, 9 H). ¹³C{¹H} NMR (Figure S20): δ 162.2, 53.2, 45.1, 40.8, 31.6, 27.6. IR (neat, cm⁻¹): 2960, 2865, 1682, 1492, 1427, 1392, 1360, 1244, 765. HRMS calcd (found) for C₈H₁₆N₂O (M⁺): 156.1263 (156.1264). Anal. calcd (found) for C₈H₁₆N₂O: C, 61.50 (61.44); H, 10.32 (10.16); N, 17.93 (17.99).

Hydroamination of liquid alkenes

1-Methyl-3-(octan-2-yl)imidazolidin-2-one (S1; Table 2, entry 4). A suspension of (**2b**)AuCl (6.3 mg, 0.010 mmol), AgSbF₆ (3.4 mg, 0.010 mmol), 1-octene (224 mg, 2.00 mmol), and **1** (20.0 mg, 0.20 mmol) in dioxane (0.5 mL) in a pressure tube was heated at 100 °C for 24 h. The crude reaction mixture was chromatographed (hexanes–EtOAc = 5:1 → 1:1) to give **S1** (40.7 mg, 96%) as a colorless oil. TLC (hexanes–EtOAc = 1:1): R_f = 0.24. ¹H NMR (Figure S21): δ 3.88 (qt, *J* = 6.4, 8.8 Hz, 1 H), 3.23-3.08 (m, 4 H), 2.71 (s, 3 H), 1.43-1.27 (m, 2 H), 1.26-1.13 (m, 8 H), 1.01 (d, *J* = 6.8 Hz, 3 H), 0.81 (t, *J* = 6.8 Hz, 3 H). ¹³C{¹H} NMR (Figure S22): δ 161.5, 47.9, 45.6, 37.2, 34.2, 31.9, 31.7, 29.3, 26.6, 22.7, 17.9, 14.2. IR (neat, cm⁻¹): 2954, 2855, 1688, 1493, 1434, 1401, 1277, 1253, 760, 725. HRMS calcd (found) for C₁₂H₂₄N₂O (M⁺): 212.1889 (212.1889).

All remaining intermolecular hydroamination reactions employing liquid alkenes were performed employing a procedure analogous to that used to synthesize **S1** employing the catalyst mixture and conditions outlined in Tables 1 or 2.

1-(5-Hydroxypentan-2-yl)-3-methylimidazolidin-2-one (Table 2, entry 5). Pale yellow oil, 98%. TLC (EtOAc–MeOH = 15:1): $R_f = 0.17$. ¹H NMR (Figure S23): δ 3.93-3.85 (m, 1 H), 3.54-3.51 (m, 2 H), 3.22-3.09 (m, 5 H), 2.67 (s, 3 H), 1.48-1.36 (m, 4 H), 1.01 (d, J = 6.8 Hz, 3 H). ¹³C{¹H} NMR (Figure S24): δ 161.6, 62.2, 47.6, 45.5, 37.1, 31.5, 30.5, 29.4, 18.1. IR (neat, cm⁻¹): 2938, 2867, 1670, 1500, 1442, 1405, 1280, 1058, 760, 729. HRMS calcd (found) for C₉H₁₈N₂O₂ (M⁺): 186.1368 (186.1373). Anal. calcd (found) for C₉H₁₈N₂O₂: C, 58.04 (57.95); H, 9.74 (9.75); N, 15.04 (14.96).

1-(5-Benzyloxypentan-2-yl)-3-methylimidazolidin-2-one (Table 2, entry 6). Pale yellow oil, 95%. TLC (hexanes–EtOAc = 1:1): $R_f = 0.14$. ¹H NMR (Figure S25): δ 7.34-7.20 (m. 5 H), 4.44 (s, 2 H), 3.92 (sextet, J = 7.2 Hz, 1 H), 3.44 (t, J = 6.0 Hz, 2 H), 3.24 - 3.11 (m, 4 H), 2.72 (s, 3 H), 1.60-1.52 (m, 2 H), 1.51-1.45 (m, 2 H), 1.04 (d, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (Figure S26): δ 161.4, 138.7, 128.4, 127.6, 127.5, 72.9, 70.0, 47.6, 45.5, 37.1, 31.6, 30.7, 26.8, 18.0. IR (neat, cm⁻¹): 2937, 2856,

1682, 1494, 1435, 1278, 1255, 1096, 737. HRMS calcd (found) for $C_{16}H_{24}N_2O_2$ (M⁺): 276.1838 (276.1837).

4-(3-Methyl-2-oxoimidazolidin-1-yl)pentanoic acid (Table 2, entry 7). Pale yellow oil, 98%. TLC (EtOAc–MeOH = 10:1): $R_f = 0.25$. ¹H NMR (Figure S27): δ 9.80 (br s, 1 H), 3.91 (qt, J = 6.4, 8.8 Hz, 1 H), 3.28-3.12 (m, 4 H), 2.69 (s, 3 H), 2.25 (t, J = 7.6 Hz, 2 H), 1.76-1.62 (m, 2 H), 1.04 (d, J = 6.8 Hz, 3 H). ¹³C{¹H} NMR (Figure S28): δ 177.0, 161.7, 47.6, 45.4, 37.2, 31.5, 31.4, 29.2, 17.9. IR (neat, cm⁻¹): 3389, 2938, 1721, 1651, 1503, 1447, 1406, 1281, 1258, 1188, 915, 759, 729. HRMS calcd (found) for C₉H₁₆N₂O₃ (M⁺): 200.1161 (200.1156). Anal. calcd (found) for C₉H₁₆N₂O₃: C, 53.98 (53.81); H, 8.05 (8.02); N, 13.99 (13.88).

Ethyl 6-(3-methyl-2-oxoimidazolidin-1-yl)heptanoate (Table 2, entry 8). Pale yellow oil, 90%. TLC (EtOAc): $R_f = 0.40$. ¹H NMR (Figure S29): δ 4.03 (q, J = 7.2 Hz, 2 H), 3.86 (qt, J = 6.4, 8.8 Hz, 1 H), 3.21-3.05 (m, 4 H), 2.68 (s, 3 H), 2.20 (t, J = 7.2 Hz, 2 H), 1.63-1.09 (m, 6 H), 1.16 (t, J = 7.2 Hz, 3 H), 1.00 (d, J = 6.8 Hz, 3 H). ¹³C{¹H} NMR (Figure S30): δ 173.7, 161.5, 60.2, 47.7, 45.5, 37.1, 34.3, 33.8, 31.6, 26.1, 24.9, 17.9, 14.3. IR (neat, cm⁻¹): 2936, 2865, 1730, 1687, 1495, 1437, 1402, 1373, 1278, 1252, 1178, 1035, 761. HRMS calcd (found) for C₁₃H₂₄N₂O₃ (M⁺): 256.1787 (256.1789). Anal. calcd (found) for C₁₃H₂₄N₂O₃: C, 60.91 (60.75); H, 9.44 (9.24); N, 10.93 (10.87).

1-Methyl-3-(1-phenylethyl)imidazolidin-2-one (Table 2, entry 9). Colorless oil, 75%. TLC (hexanes–EtOAc = 1:1): $R_f = 0.23$. ¹H NMR (Figure S31): δ 7.36-7.21 (m, 5 H), 5.25 (q, J = 7.2 Hz, 1 H), 3.26-3.14 (m, 3 H), 2.94-2.84 (m, 1 H), 2.77 (s, 3 H), 1.49 (d, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (Figure S32): δ 161.3, 141.0, 128.6, 127.4, 50.6, 45.4, 37.7, 31.6, 16.3. IR (neat, cm⁻¹): 2936, 2872, 1686, 1494, 1436, 1401, 1278, 1253, 759, 701. HRMS calcd (found) for C₁₂H₁₆N₂O (M⁺): 204.1263 (204.1262). Anal. calcd (found) for C₁₂H₁₆N₂O: C, 70.56 (70.49); H, 7.90 (7.74); N, 13.71 (13.65).

1-(Bicyclo[2.2.1]heptan-2-yl)-3-methylimidazolidin-2-one (Table 2, entry 11). Colorless oil that solidified on standing, 86%. TLC (hexane–EtOAc = 1:1): $R_f = 0.15$. ¹H NMR (Figure S33): δ 3.77 (dd, J = 4.8, 8.4 Hz, 1 H), 3.31-3.12 (m, 4 H), 2.71 (s, 3 H), 2.24 (s, br, 1 H), 2.16 (s, br, 1 H), 1.61 (ddd, J =

2.4, 8.4, 12.4 Hz, 1 H), 1.49-1.39 (m, 3 H), 1.38-1.34 (m, 1 H), 1.29-1.21 (m, 1 H), 1.14-1.08 (m, 2 H). $^{13}C{^{1}H}$ NMR (Figure S34): δ 161.6, 55.8, 45.7, 40.5, 39.8, 36.9, 36.7, 36.2, 31.7, 28.4, 27.9. IR (neat, cm⁻¹): 2951, 2853, 1687, 1491, 1278, 760, 699. HRMS calcd (found) for C₁₁H₁₈N₂O (M⁺): 194.1419 (194.1418).

Table S1. Effect of Ligand, Silver Salt, and Solvent on the Gold(I)-Catalyzed Hydroamination of 1octene with **1**.

^aYield determined by ¹H NMR analysis of the crude reaction mixture; isolated yields in parentheses. ^bFive equivalents 1-octene employed. ^cOne and a half equivalents 1-octene employed.

Control Reactions

1) Gold/ligand only. A suspension of 1 (20.0 mg, 0.20 mmol), 1-octene (220 mg, 2.0 mmol), and (2b)AuCl (12.6 mg, 0.020 mmol) in diglyme (0.5 mL) in a pressure tube was stirred at 100 °C for 24 h and then cooled to room temperature. GC analysis of the crude reaction mixture revealed no detectable consumption of 1 and no detectable formation of S1.

2) Silver only. A suspension of 1 (20.0 mg, 0.20 mmol), 1-octene (220 mg, 2.0 mmol), and $AgSbF_6$ (6.9 mg, 0.020 mmol) in diglyme (0.5 mL) in a pressure tube was stirred at 100 °C for 24 h and then cooled to room temperature. GC analysis of the crude reaction mixture revealed no detectable consumption of 1 and no detectable formation of S1.

3) Silver/ligand only. A suspension of **1** (20.0 mg, 0.20 mmol), 1-octene (220 mg, 2.0 mmol), AgSbF₆ (6.9 mg, 0.020 mmol), and **2b** (8.0 mg, 0.020 mmol) in diglyme (0.5 mL) in a pressure tube was stirred at 100 °C for 24 h and then cooled to room temperature. GC analysis of the crude reaction mixture revealed no detectable consumption of **1** and no detectable formation of **S1**.

4) HOTf only. A suspension of **1** (20.0 mg, 0.20 mmol), 1-octene (220 mg, 2.0 mmol), and HOTf (3.0 mg, 0.020 mmol) in diglyme (0.5 mL) in a pressure tube was stirred at 100 °C for 24 h and then cooled to room temperature. GC analysis of the crude reaction mixture revealed no detectable consumption of **1** and no detectable formation of **S1**.

A suspension of HOTf (4.5 mg, 0.030 mmol), and **1** (25.8 mg, 0.30 mmol) in dioxane (0.5 mL) in a pressure tube was evacuated via a freeze-pump-thaw cycle, pressurized with ethylene (120 psi), and heated at 100 °C for 48 h at constant ethylene pressure. The tube was cooled to room temperature and depressurized. GC analysis of the crude reaction mixture revealed no detectable consumption of **1** and no detectable formation of **3**.

5) HOTf/ligand only. A suspension of **1** (20.0 mg, 0.20 mmol), 1-octene (220 mg, 2.0 mmol), HOTf (3.0 mg, 0.020 mmol), and **2b** (8.0 mg, 0.020 mmol) in diglyme (0.5 mL) in a pressure tube was stirred at 100 °C for 24 h and then cooled to room temperature. GC analysis of the crude reaction mixture revealed no detectable consumption of **1** and no detectable formation of **S1**.

Part II: Enantioselective Hydroamination.

1-Methyl-3-(octan-2-yl)imidazolidin-2-one (S1; Table 3, entry 1). A suspension of **1** (20 mg, 0.20 mmol), 1-octene (1.3 g, 12 mmol), $[(S)-4](AuCl)_2$ (8.0 mg, 5.0×10^{-3} mmol), and AgOTf (2.6 mg, 1.0×10^{-2} mmol) in *m*-xylene (0.5 mL) was stirred at 100 °C for 48 h. The crude mixture was filtered through plug of silica gel, concentrated, and chromatographed (hexanes–EtOAc = $5:1 \rightarrow 1:1$) to give **S1** (37 mg, 86%) as a colorless oil. Enantiopurity of **S1** (76% ee) was determined by HPLC analysis (95:5 hexanes/isopropanol, 0.5 mL/min; Figure S35).

All remaining enantiomericially enriched cyclic ureas were synthesized employing a procedure similar to that used to synthesize enantiomerically enriched **S1**.

1-(Octan-2-yl)-3-phenylimidazolidin-2-one (Table 3, entry 2). Colorless oil, 80% yield. TLC (hexanes–EtOAc = 5:1): $R_f = 0.43$. ¹H NMR (Figure S36): δ 7.57-7.55 (m, 2 H), 7.34-7.30 (m, 2 H), 7.01 (t, J = 7.6 Hz, 1 H), 4.08 (qt, J = 6.4, 8.8 Hz, 1 H), 3.82-3.78 (m, 2 H), 3.50-3.33 (m, 2 H), 1.52-1.21 (m, 10 H), 1.15 (d, J = 7.2 Hz, 3 H), 0.87 (t, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (Figure S37): δ 157.38, 140.76, 128.70, 122.0, 117.17, 47.67, 42.53, 36.37, 34.0, 31.73, 29.12, 26.46, 22.59, 17.87, 14.05. IR (neat, cm⁻¹): 2924, 2855, 1697, 1600, 1503, 1481, 1456, 1417, 1391, 1259, 1145, 1095, 752. HRMS calcd (found) for C₁₇H₂₆N₂O (M⁺): 274.2045 (274.2050). Enantiopurity (71% ee) was determined by HPLC analysis (99:1 hexanes/isopropanol, 0.5 mL/min; Figure S38).

1-(4-Fluorophenyl)-3-(octan-2-yl)imidazolidin-2-one (Table 3, entry 3). Colorless oil, 81% yield. TLC (hexanes–EtOAc = 5:1): $R_{\rm f}$ = 0.37. ¹H NMR (Figure S39): δ 7.45-7.41 (m, 2 H), 6.97-6.92 (m, 2 H), 4.06 (qt. *J* = 7.2, 8.4 Hz, 1H), 3.73-3.68 (m, 2 H), 3.38-3.26 (m, 2 H), 1.49-1.33 (m, 2 H), 1.32-

1.14 (m, 8 H), 1.08 (d, J = 6.8 Hz, 3 H), 0.80 (t, J = 6.4 Hz, 3 H). ¹³C{¹H} NMR (Figure S40): δ 159.4, 157.4, 136.9, 118.8, 118.7, 115.4, 115.1, 47.8, 42.8, 36.4, 34.0, 31.7, 29.1, 26.5, 22.6, 17.8, 14.0. IR (neat, cm⁻¹): 2926, 2856, 1693, 1510, 1482, 1424, 1392, 1259, 1224, 1160, 1144, 828, 750. HRMS calcd (found) for C₁₇H₂₅FN₂O (M⁺): 292.1951 (292.1954). Enantiopurity (74% ee) was determined by HPLC analysis (95:5 hexanes/isopropanol, 0.5 mL/min; Figure S41).

1-*tert*-Butyl-3-(octan-2-yl)imidazolidin-2-one (Table 3, entry 4). Colorless oil, 89% yield. TLC (hexanes–EtOAc = 2:1): $R_f = 0.70$. ¹H NMR (Figure S42): δ 3.90 (sextet, J = 6.8 Hz, 1 H), 3.30-3.21 (m, 2 H), 3.14-3.03 (m, 2H), 1.33 (s, 9 H), 1.32-1.19 (m, 10 H), 1.04 (d, J = 6.8 Hz, 3 H), 0.85 (t, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (Figure S43): δ 161.4, 53.09, 47.44, 41.16, 36.92, 34.28, 32.0, 29.4, 27.6, 26.7, 22.8, 17.8, 14.3. IR (neat, cm⁻¹): 2958, 2925, 2855, 1683, 1482, 1455, 1414, 1392, 1361, 1267, 1249, 1227, 1144, 1102, 765, 745. HRMS calcd (found) for C₁₅H₃₀N₂O (M⁺): 254.2358 (254.2357). Enantiopurity (78% ee) was determined by HPLC analysis (97:3 hexanes/isopropanol, 0.5 mL/min; Figure S44).

1-(Decan-2-yl)-3-methylimidazolidin-2-one (Table 3, entry 5). Colorless oil. 83% yield. TLC (hexanes–EtOAc = 1:1): $R_f = 0.33$. ¹H NMR (Figure S45): δ 3.92 (qt, J = 6.4, 8.8 Hz, 1 H), 3.24-3.10 (m, 4 H), 2.73 (s, 3 H), 1.45-1.33 (m, 2 H), 1.32-1.17 (m, 12 H), 1.03 (d, J = 6.8 Hz, 3 H), 0.83 (t, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (Figure S46): δ 161.9, 48.3, 46.0, 37.5, 34.6, 32.4, 32.0, 30.0, 29.9, 29.8, 27.0, 23.1, 18.3, 14.6. IR (neat, cm⁻¹): 2923, 2853, 1690, 1493, 1433, 1401, 1277, 1253, 1048, 760. HRMS calcd (found) for C₁₄H₂₈N₂O (M⁺): 240.2202 (240.2207). Enantiopurity (73% ee) was determined by HPLC analysis (98:2 hexanes/isopropanol, 0.5 mL/min; Figure S47).

1-(Dodecan-2-yl)-3-methylimidazolidin-2-one (Table 3, entry 6). Colorless oil, 76% yield. TLC (hexanes–EtOAc = 1:1): $R_f = 0.36$. ¹H NMR (Figure S48): δ 3.87 (qt, J = 7, 8.5 Hz, 1 H), 3.21-3.08 (m, 4 H), 2.71 (s, 3 H), 1.39-1.27 (m, 2 H), 1.26-1.13 (m, 16 H), 1.05 (d, J = 7.0 Hz, 3 H), 0.81 (t, J = 7.0 Hz, 3 H). ¹³C{¹H} NMR (Figure S49): δ 161.7, 48.0, 45.8, 37.3, 34.3, 32.1, 31.8, 29.8, 29.8, 29.8, 29.6, 26.7, 22.9, 18.0, 14.3. IR (neat, cm⁻¹): 2922, 2852, 2922, 2852, 1693, 1493, 1433, 1401, 1277, 1254,

1046, 760. HRMS calcd (found) for $C_{16}H_{32}N_2O$ (M⁺): 268.2515 (268.2511). Enantiopurity (75% ee) was determined by HPLC analysis (97:3 hexanes/isopropanol, 0.5 mL/min; Figure S50).

Optimization of Enantioselective Hydroamination

Table S2. Effect of Silver Salt and Solvent on the Enantioselectivity of the Gold(I)-Catalyzed

 Hydroamination of 1-Octene with 1 Catalyzed by Bis(gold) Phosphine Complexes.

	o ↓		L(AuCl) AgX	9 ₂ (2.5 mol %) (5 mol %)	O Me ∥ ∣	
Mel	N NH	+ 1-octene	solv	vent, 48 h Mel	N N T	τ ₅ ^{Me}
	1				<u> </u>	
entry	L	Х	solvent	1-octene amount (equiv)	temp (°C)	ee (%) ^a
1	(<i>S</i>)- 4	BF_4	dioxane	15	80	46
2	(<i>S</i>)- 4	OTs	dioxane	15	80	
3	(<i>S</i>)- 4	PF_6	dioxane	15	80	47
4	(<i>S</i>)- 4	OTf	dioxane	15	80	62
5	(<i>S</i>)- 4	CIO ₄	dioxane	15	80	47
6	(<i>S</i>)- 4	AsF ₆	dioxane	15	80	45
7	(<i>S</i>)- 4	SbF ₆	dioxane	6	60	38
8	(<i>S</i>)- 4	OTf	MeOH	6	60	38
9	(<i>S</i>)- 4	OTf	DMSO	6	60	
10	(<i>S</i>)- 4	OTf	toluene	6	60	54
11	(<i>S</i>)- 4	OTf	dioxane	6	60	48
12	(<i>S</i>)- 4	OTf	CH ₃ NO ₂	6	60	
13	(<i>S</i>)- 4	OTf	MeCN	6	60	34
14	(<i>S</i>)- 4	OTf	THF	6	60	46
15	(<i>S</i>)- 4	OTf	toluene	15	60	66
16	(<i>S</i>)- 4	OTf	dioxane	15	60	61
17	(<i>S</i>)-L4	OTf	toluene	15	60	50
18	(<i>S</i>)-L4	OTf	dioxane	15	60	56
19	(<i>S</i>)- L5	OTf	toluene	15	60	
20	(<i>S</i>)- L5	OTf	dioxane	15	60	7
21	(<i>S</i>)- L6	OTf	toluene	15	60	
22	(<i>S</i>)- L6	OTf	dioxane	15	60	
23	(<i>S</i>)- L7	OTf	toluene	15	60	68
24	(<i>S</i>)- L7	OTf	dioxane	15	60	57
25	(<i>S</i>)- L7	OTf	toluene	30	60	69
26	(<i>S</i>)-L7	OTf	<i>m</i> -xylene	30	60	70
27	(<i>S</i>)- 4	OTf	toluene	30	60	71
28	(<i>S</i>)- 4	OTf	<i>m</i> -xylene	30	60	74

^aEnantiomeric purity determined by HPLC analysis on a chiral stationary phase.

Table S3. Effect of Temperature and Alkene Loading on the Conversion and Enantioselectivity of the Hydroamination of 1-Octene with **1** catalyzed by $[(S)-4](AuCl)_2$ (2.5 mol %) and AgOTf (5 mol %) in *m*-xylene.

^aDetermined by ¹H NMR analysis of the crude reaction mixture. ^bEnantiomeric purity determined by HPLC analysis on a chiral stationary phase.

Control reactions

(1) Silver/ligand only. A suspension of 1 (20.0 mg, 0.20 mmol), 1-octene (1.92 mL, 12.0 mmol), AgOTf (5.1 mg, 0.020 mmol), and (S)-4 (23.0 mg, 0.020 mmol) in *m*-xylene (0.5 mL) in a pressure tube was stirred at 100 °C for 48 h. The crude mixture was then filtered through a silica gel

plug and concentrated. NMR analysis of the crude reaction mixture revealed no detectable formation of **S1**.

(2) HOTf/ligand only. A suspension of 1 (20.0 mg, 0.20 mmol), 1-octene (1.92 mL, 12.0 mmol), HOTf (3.0 mg, 0.020 mmol), and (S)-4 (23.0 mg, 0.020 mmol) in *m*-xylene (0.5 mL) in a pressure tube was stirred at 100 °C for 48 h. The crude mixture was then filtered through a silica gel plug and concentrated. NMR analysis of the crude reaction mixture revealed no detectable formation of **S1**.

Figure S1. ¹H NMR spectrum of 3 in CDCl₃.

Figure S2. $^{13}C{^{1}H}$ NMR spectrum of **3** in CDCl₃.

Figure S4. ${}^{13}C{}^{1}H$ NMR spectrum of 3-ethyloxazolidin-2-one in CDCl₃.

Figure S6. ¹³C{¹H} NMR spectrum of 1,3-diethylimidazolidin-2-one in CDCl₃.

Figure S7. ¹H NMR spectrum of 1,3-diisopropylimidazolidin-2-one in CDCl₃.

Figure S8. $^{13}C{^{1}H}$ NMR spectrum of 1,3-diisopropylimidazolidin-2-one in CDCl₃.

Figure S9. ¹H NMR spectrum of 1,3-di-*sec*-butylimidazolidin-2-one in CDCl₃.

Figure S10. ¹³C{¹H} NMR spectrum of 1,3-di-*sec*-butylimidazolidin-2-one in CDCl₃.

Figure S11. ¹H NMR spectrum of 1,3-diethyl-tetrahydropyrimidin-2(1*H*)-one in CDCl₃.

Figure S12. ¹³C{¹H} NMR spectrum of 1,3-diethyl-tetrahydropyrimidin-2(1*H*)-one in CDCl₃.

Figure S13. ¹H NMR spectrum of 1,3-diisopropyl-tetrahydropyrimidin-2(1*H*)-one in CDCl₃.

Figure S14. ¹³C{¹H} NMR spectrum of 1,3-diisopropyl-tetrahydropyrimidin-2(1*H*)-one in CDCl₃.

Figure S15. ¹H NMR spectrum of 1-isopropyl-3-methylimidazolidin-2-one in CDCl₃.

Figure S16. ¹³C{¹H} NMR spectrum of 1-isopropyl-3-methylimidazolidin-2-one in $CDCI_3$.

Figure S17. ¹H NMR spectrum of 1-*sec*-butyl-3-methylimidazolidin-2-one in CDCl₃.

Figure S18. ¹³C{¹H} NMR spectrum of 1-*sec*-butyl-3-methylimidazolidin-2-one in CDCl₃.

Figure S19. ¹H NMR spectrum of 1-*tert*-butyl-3-methylimidazolidin-2-one in CDCl₃.

Figure S21. ¹H NMR spectrum of 1-methyl-3-(octan-2-yl)imidazolidin-2-one in CDCl₃.

Figure S22. ¹³C{¹H} NMR spectrum of 1-methyl-3-(octan-2-yl)imidazolidin-2-one in CDCl₃.

Figure S23. ¹H NMR spectrum of 1-(5-hydroxypentan-2-yl)-3-methylimidazolidin-2-one in CDCl₃.

Figure S24. ¹³C{¹H} NMR spectrum of 1-(5-hydroxypentan-2-yl)-3-methylimidazolidin-2-one in CDCl₃.

Figure S25. ¹H NMR spectrum of 1-(5-benzyloxypentan-2-yl)-3-methylimidazolidin-2-one in CDCl₃.

Figure S26. ¹³C{¹H} NMR spectrum of 1-(5-benzyloxypentan-2-yl)-3-methylimidazolidin-2-one in $CDCI_3$.

Figure S27. ¹H NMR spectrum of 4-(3-methyl-2-oxoimidazolidin-1-yl)pentanoic acid in CDCl₃.

Figure S28. ¹³C{¹H} NMR spectrum of 4-(3-methyl-2-oxoimidazolidin-1-yl)pentanoic acid in CDCl₃.

Figure S29. ¹H NMR spectrum of ethyl 6-(3-methyl-2-oxoimidazolidin-1-yl)heptanoate in CDCl₃.

Figure S30. ¹³C{¹H} NMR spectrum of ethyl 6-(3-methyl-2-oxoimidazolidin-1-yl)heptanoate in CDCl₃.

Figure S31. ¹H NMR spectrum of 1-methyl-3-(1-phenylethyl)imidazolidin-2-one in CDCl₃.

Figure S33. $^{13}C{^1H}$ NMR spectrum of 1-(bicyclo[2.2.1]heptan-2-yl)-3-methylimidazolidin-2-one in CDCl₃.

Figure S34. ¹³C{¹H} NMR spectrum of 1-(bicyclo[2.2.1]heptan-2-yl)-3-methylimidazolidin-2-one in $CDCI_3$.

Figure S35. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 76 % ee) methyl-3-(octan-2-yl)imidazolidin-2-one.

Figure S36. ¹H NMR spectrum of 1-(octan-2-yl)-3-phenylimidazolidin-2-one in CDCl₃.

Figure S38. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 71 % ee) 1-(octan-2-yl)-3-phenylimidazolidin-2-one.

Figure S39. ¹H NMR spectrum of 1-(4-fluorophenyl)-3-(octan-2-yl)imidazolidin-2-one in CDCl₃.

Figure S40. ¹³C NMR spectrum of 1-(4-fluorophenyl)-3-(octan-2-yl)imidazolidin-2-one in CDCl₃.

Figure S41. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 74 % ee) 1-(4-fluorophenyl)-3-(octan-2-yl)imidazolidin-2-one.

Figure S42. ¹H NMR spectrum of 1-*tert*-butyl-3-(octan-2-yl)imidazolidin-2-one in CDCl₃.

Figure S44. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 78 % ee) 1-*tert*-butyl-3-(octan-2-yl)imidazolidin-2-one.

Figure S45. ¹H NMR spectrum of 1-(decan-2-yl)-3-methylimidazolidin-2-one in CDCl₃.

Figure S46. ¹³C NMR spectrum of 1-(decan-2-yl)-3-methylimidazolidin-2-one in CDCl₃.

Figure S47. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 73 % ee) 1-(decan-2-yl)-3-methylimidazolidin-2-one.

Figure S49. ¹³C NMR spectrum of 1-(dodecan-2-yl)-3-methylimidazolidin-2-one in CDCl₃.

Figure S50. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 75 % ee) 1-(dodecan-2-yl)-3-methylimidazolidin-2-one.

References

- S1) (a) Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178. (b)
- Bender, C. F.; Widenhoefer, R. A. Chem. Commun. 2008, 2741.
- S2) Munoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293.
- S3) Peet, N. P.; Sunder, S. J. Org. Chem. 1980, 45, 536.
- S4) (a) Bogatsky, A. V.; Lukyanenko, N. G.; Kirichenko, T. I. *Synthesis* **1982**, *6*, 464. (b) Cerioni, G. *Spectrochimica Acta* **1983**, *39A*, 929.