Halogenated β , γ -methylene- and ethylidene-dGTP-DNA ternary complexes with DNA polymerase β : structural evidence for stereospecific binding of the fluoro

analogues

Vinod K. Batra^a, Lars C. Pedersen^a, William A. Beard^a, Samuel H. Wilson^a, Boris A. Kashemirov^b, Thomas G. Upton^b, Myron F. Goodman^b and Charles E. McKenna^{*b}

^{*a*}Laboratory of Structural Biology, NIEHS, National Institutes of Health DHHS, Research Triangle Park, North Carolina 27709. ^bDepartments of Chemistry and Biology, University of Southern California, Los Angeles, California 90089

*mckenna@usc.edu

For detailed synthesis and analytical data for compounds **1-9**, **15**, **16** see *Biochemistry* **2008**, *47*, 870-879 and *JACS* **2007**, *129*, 15412-15413.

Supporting Information

Table of Contents

Table S1.	Summary of HPLC peak retention and eluting buffer data for β , γ -methylene bisphosphonate dGTP analogues 1 - 16
Figure S1.	HPLC analysis (SAX) of the conversion of dGMP-Morph to 10/114
Figure S2.	HPLC analysis (SAX) of 10/11 after dual-pass prep. HPLC4
Figure S3.	HPLC analysis (SAX) of the conversion of dGMP-Morph to 125
Figure S4.	HPLC analysis (SAX) of 12 after dual-pass prep. HPLC
Figure S5.	HPLC analysis (SAX) of the conversion of dGMP-Morph to 13/146
Figure S6.	HPLC analysis (SAX) of 13/14 after dual-pass prep. HPLC6
Figure S7.	HRMS dGMP-EBP, 10/117
Figure S8.	HRMS dGMP-DMBP, 12
Figure S9.	HRMS dGMP-FMBP, 13/14
Figure S10.	1H NMR of dGMP-β,γ-EBP, 10/1110
Figure S11.	31P NMR of dGMP-β,γ-EBP, 10/11 (1H decoupled)

Figure S12.	1H NMR of dGMP-β,γ-DMBP, 12	
Figure S13.	31P NMR of dGMP- β , γ -DMBP, 12 (1H decoupled)	13
Figure S14.	1H NMR of dGMP-β,γ-FMBP, 13/14	14
Figure S15.	31P NMR of dGMP- β , γ -FMBP, 13/14 (1H decoupled)	15
Figure S16.	19F NMR of dGMP-β,γ-FMBP, 13/14	

Table S1.Summary of HPLC peak retention and eluting buffer data for β , γ -methylene
bisphosphonate dGTP analogues 1 - 16

(Column specifications and other HPLC information are given in the main article. See also: *Biochemistry* **2008**, *47*, 870-879 and *JACS* **2007**, *129*, 15412-15413.

Compound (#)	СХҮ	Retention time (column)	Buffer
JCMD		3.5 min (C-18)	0.1N TEAB (2% CH ₃ CN)
aGMP		8 min (SAX)	0-100% 0.5M TEAB gradient
		5.5 min (C-18)	0.1N TEAB (2% CH ₃ CN)
dGMP-Morph		5 min (SAX)	0-100% 0.5M TEAB gradient
dGMP-MBP(1)	CH ₂	16 min (SAX)	0-100% 0.5M TEAB gradient
dGMP-DFBP (2)	CF ₂	17 min (SAX)	0-100% 0.5M TEAB gradient
dGMP-MFBP (3/4)	CHF	13 min (SAX)	0-100% 0.5M LiCl gradient
dGMP-DCBP (5)	CCl ₂	16 min (SAX)	0-100% 0.5M TEAB gradient
dGMP-MCBP (6/7)	CHCl	17 min (SAX)	0-100% 0.5M TEAB gradient
dGMP-MBBP (8/9)	CHBr	13 min (SAX)	0-100% 0.5M LiCl gradient
dGMP-EBP (10/11)	CH(CH ₃)	12 min (SAX)	0-100% 0.5M LiCl gradient
dGMP-DMBP (12)	C(CH ₃) ₂	11 min (SAX)	0-100% 0.5M LiCl gradient
dGMP-FMBP (13/14)	CF(CH ₃)	13 min (SAX)	0-100% 0.5M LiCl gradient
dGMP-FClBP (15/16)	CFC1	12 min (SAX)	0-100% 0.5M LiCl gradient

Figures S1-S6: HPLC analysis

Reaction mixtures were analyzed by injecting 2-3 μ L into the indicated column. The relative intensities of the weaker spectra have been increased up to 3- fold to aid in peak comparisons. The HPLC data were visualized using either Chromplot v1.2 (Rainin) or EZStart v7.4 (Shimadzu).

Figure S1. HPLC analysis (SAX) of the conversion of dGMP-Morph to 10/11.

Figure S2. HPLC analysis (SAX) of 10/11 after dual-pass prep. HPLC.

Figure S3. HPLC analysis (SAX) of the conversion of dGMP-Morph to **12.**

Figure S4. HPLC analysis (SAX) of 12 after dual-pass prep. HPLC.

Figure S5. HPLC analysis (SAX) of the conversion of dGMP-Morph to 13/14.

Figure S6. HPLC analysis (SAX) of 13/14 after dual-pass prep. HPLC.

MS Analysis of β,γ-methylene analogues of dGTP Figure S7. HRMS dGMP-EBP, 10/11

Figure S9. HRMS dGMP-FMBP, 13/14

NMR Analysis of β , γ -methylene analogues of dGTP

NOTE All compounds are isolated as the triethylammonium salt after dual-pass HPLC **Figure S10.** ¹H NMR of dGMP- β , γ -EBP, **10/11**

Figure S11. ³¹P NMR of dGMP- β , γ -EBP, **10/11** (¹H decoupled)

Figure S12. ¹H NMR of dGMP- β , γ -DMBP, **12**

Figure S13. ³¹P NMR of dGMP- β , γ -DMBP, **12** (¹H decoupled)

Figure S14. ¹H NMR of dGMP- β , γ -FMBP, **13/14**

Figure S15. ³¹P NMR of dGMP- β , γ -FMBP, **13/14** (¹H decoupled)

Figure S16. ¹⁹F NMR of dGMP- β , γ -FMBP, **13/14**