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1 Web Appendix A

1.1 Sensitivity Analysis

In the main paper we discuss the issue of no unmeasured confounders in our discussion Section 7.
The database used for our analysis has been refined over the years as it has been used extensively for
treatment related research and for which a great deal of effort has been made in capturing the most
relevant data that clinicians use in treatment decision making. Therefore, we are cautiously optimistic
that the assumption of no unmeasured confounders may be reasonable for our data analysis. However,
except for a randomized study, this assumption is nonidentifiable.

As an example of a sensitivity analysis, we may consider the approach of Brumback et al. (2004).
They define the sensitivity parameter

c(a, x) = E{Y ∗(a)|T = a,X = x} − E{Y ∗(a)|T = 1− a,X = x}, a = 0, 1, (1)

as a sensitivity function whose range of plausible values may be elicited from subject matter scientists.
Under the assumption of no unmeasured confounders c(a, x) = 0 for all a and x. If we consider any
treatment regime g(X) and the corresponding potential response

Y ∗(g) = Y ∗(1)g(X) + Y ∗(0){1− g(X)},

we have shown that our estimator P̂{Y ∗(g) = 1} converges to

EX [E(Y |T = 1, X)g(X) + E(Y |T = 0, X){1− g(X)}].

It is then straightforward to show that for the sensitivity function (1), the bias of our estimator
P̂{Y ∗(g) = 1} is given by

EX [c(1, X)P (T = 0|X)g(X) + c(0, X)P (T = 1|X){1− g(X)}],

where P (T = 1|X) is the propensity score. If we consider a model for the propensity score (usually a
logistic regression model is used) where we assume that P (T = 1|X) = θ(X, γ), where the parameter
γ is estimated using maximum likelihood and denoted by γ̂, then the bias can be estimated by

b̂ = n−1
n∑

i=1

[
c(1, Xi){1− θ(Xi, γ̂)g(Xi)}+ c(0, Xi)θ(Xi, γ̂){1− g(Xi)}

]
.

A bias corrected estimator for P{Y ∗(g) = 1} could then be obtained as P̂{Y ∗(g) = 1} − b̂. The
asymptotic properties of this estimator as well as the corrected estimator for AB(g) could then be
derived using methods as described in our paper with, of course, accounting for the estimation of γ in
the propensity score model.

2 Web Appendix B

2.1 Additional Simulations

In the main text we report results of several simulations, each based on 10000 Monte Carlo data sets.
Here we put forth some two covariate simulations to illustrate that the current estimator for ABopt(0)
has good coverage probabilities. For simplicity we consider data where Yi is binary disease status, Ti

is treatment, and X1i, X2i will be two independent potentially confounding covariate generated from
a N(0, 1) distribution. For each given X1i, X2i we generated a Bernoulli treatment indicator Ti from
the logistic regression model:
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logit{P (Ti = 1|X1i, X2i)} = α0 + α1X1i + α2X2i, (2)

and a Bernoulli disease indicator Yi from the logistic regression model:

logit{P (Yi = 1|Ti, X1i, X2i)} = β0 + β1Ti + β2X1i + β3X2i + β4TiX1i + β5TiX2i. (3)

From model (3), the optimal treatment regime is given by gopt(x1, x2) = I(β1 + β4x1 + β5x2 < 0).
Just like in the main paper, generated data and logit model estimates were then input into SAS
IML where ÂBopt, and confidence intervals were calculated for each Monte Carlo dataset. Web table
1 illustrates seven different examples with different combinations of model parameters. We depict
the true parameter values along with estimates of ÂBopt, Monte Carlo standard error, delta-theorem
standard error and confidence intervals for both back-transformed and delta-theorem methods averaged
over all 10000 Monte Carlo samples. For comparison we also considered the treatment regime where
everyone gets the better of the two treatments, ABdom.

3 Web Appendix C

3.1 SAS Macro to calculate ABopt(0)

The following SAS code can also be found online at https://www.ecu.edu/cs-dhs/bios/ABopt.cfm.

/*******************************************************************************

|

| Program Name: AB opt covariate simulation

|

| Program Version: 1.0

|

| Program Purpose: Calculates AB for the optimal treatment regime from a

| prespecified model. User must preload data into SAS work folder.

|

| SAS Version: 8 or 9

|

| Created By: Jason Brinkley

| Date: 19-Feb-2009

|

|*******************************************************************************

| Change Log

|

| Modified By:

| Date of Modification:

|

| Modification ID:

| Reason For Modification:

|

*******************************************************************************/

/*Instructions:

Load data into SAS work folder. Data must be of form: Binary Disease, Binary

Exposure/Treatment, Continuous or Binary Covariates. For discrete variable input,

analyst needs to make binary indicators for each level of covariate and input those

binary indicators instead of discrete variables. User must create interaction

variables in the dataset before running macro. Analyst needs to use other
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Table 1: Additional Simulation Results for ÂBopt(0)

Simulation 1 2 3 4 5 6 7
n 1000 1000 1000 1000 1000 1000 1000
Reps 10000 10000 10000 10000 10000 10000 10000
α0 1 0.5 -1.25 -1.25 -1.25 -1.25 -1.25
α1 -1 1.5 1 1 1 0.5 1
α2 1 2 1 1 1 0.5 1
β0 -1 0.5 -3 -2.5 -1 -1.25 0.8
β1 -1 1 1.25 1.25 1.25 1.5 0.5
β2 1 1 1.1 1.1 1.1 0.5 1
β3 0.5 1 1.1 1.1 1.1 0.5 1
β4 -0.5 1.5 1 -1.5 2 0 -1.5
β5 0.5 0 -1 -1.5 -2.5 0 -2.5

P (T = 1) 0.6755 0.5637 0.2843 0.6755 0.2843 0.2432 0.2843
P (Y = 1) 0.2423 0.6393 0.1595 0.2423 0.3797 0.3203 0.6075
P{Y ∗(0) = 1} 0.3087 0.5785 0.0953 0.3087 0.3621 0.2335 0.6263
P{Y ∗(1) = 1} 0.1889 0.6874 0.2644 0.1889 0.5337 0.5505 0.6064
P{Y ∗(gopt) = 1} 0.1839 0.5682 0.0886 0.184 0.277 0.2335 0.5554
ABdom 0.2204 0.0951 0.4025 0.2204 0.0464 0.2710 0.0018
ABopt 0.2410 0.1112 0.4445 0.2406 0.2705 0.2710 0.0858

ÂBopt(0) 0.2475 0.1155 0.4545 0.2475 0.2741 0.2729 0.0898
ŜE{ABopt(0)}mc 0.0464 0.0265 0.0605 0.0464 0.027 0.0303 0.0194
ŜE{ABopt(0)}dt 0.0477 0.0266 0.0596 0.0477 0.0269 0.0304 0.0190
BT Lower 95% 0.1479 0.0618 0.3238 0.1479 0.2194 0.2109 0.0518
BT Upper 95% 0.3353 0.166 0.5593 0.3353 0.3249 0.3301 0.1262
BT Coverage 0.9562 0.9557 0.9477 0.9565 0.9502 0.9509 0.9413
DT Lower 95% 0.154 0.0634 0.3377 0.154 0.2214 0.2134 0.0526
DT Upper 95% 0.341 0.1676 0.5712 0.341 0.3249 0.3325 0.1270
DT Coverage 0.9509 0.9542 0.9381 0.9518 0.9482 0.9503 0.9395
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techniques to find "best" model before running macro.

Macro inputs are as follows:

alpha - Confidence level for intervals (i.e. 95% intervals mean alpha=0.05)

Data - name of dataset in work folder

D - Binary outcome/disease variable

E - Binary exposure/treatment variable

X - one or many covariates. Continuous or Binary only.

Interactions between covariates go here.

X2 - Which covariates/exposure interactions are included in the model

(i.e. if E*X is significant then put X here)

Int - User created interaction variables in model

(i.e. if E*X is significant, analyst creates variable EX=E*X

EX goes here)

Out - Name of output dataset for further manipulation

Interaction - Indicator of whether there is covariate/exposure interactions

in the model (0 = no interactions, 1 = interactions).

IF THERE ARE COVARIATE/COVARIATE INTERACTIONS ONLY THEN PUT 0 HERE.

*/

%Macro AB_opt_reg(alpha, Data, D, E, X, X2, Int, Out, Interaction);

*Different logit models whether there is interactions;

%IF &Interaction = 0 %Then %Do;

proc logistic descending data=&Data;

model &D = &E &X;

ods output ParameterEstimates = ParameterEstimates;

run;

%End;

%IF &Interaction = 1 %Then %Do;

proc logistic descending data=&Data;

model &D = &E &X &Int ;

ods output ParameterEstimates = ParameterEstimates;

run;

%End;

quit;

Data Betas;

set ParameterEstimates;

Keep Data Variable Estimate StdErr;

run;

proc iml;

*Output files step, initializing variables;

P_Dopt=0;

P_D=0;

Lower_BT=0;

Upper_BT=0;

AB_opt_hat = 0;

ln_ratio = 0;
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lower_DT =0;

upper_DT = 0;

se_ab=0;

*Load data;

use &Data;

read all var {&X} into X;

read all var {&E} into E;

read all var {&D} into D;

read all var {&X2} into X2;

if &Interaction = 1 then read all var {&Int} into int;

*Calculate estimates for P(D=1);

P_D=(sum(D))/(nrow(D));

IF3=(D-P_D)/P_D;

Use Betas;

read all var{estimate} into B;

read all var{stderr} into StdErrB;

*bound needed for numeric derivatives;

bound = .01 * StdErrB;

bound2= bound;

r = nrow(B);

n=nrow(D);

Outvar = n||P_Dopt || P_D || AB_opt_hat ||ln_ratio || Lower_BT ||Upper_BT

||Lower_DT || Upper_DT ||SE_AB ;

cname = {"Sample Size" "Prob D optimal" "Prob Disease" "AB opt hat"

"ln(ratio)" "Lower BT" "Upper BT" "Lower DT" "Upper DT" "Delta SE" };

create out from Outvar [ colname=cname ];

*f, f_0, and f_1 are different whether there are interactions or not;

I=j(n,1);

if &Interaction=0 then f=T(I||E||X);

if &Interaction=1 then f=T(I||E||X||Int);

I1=j(n,1);

*I2 is a vector of zeros;

I2=I1-I1;

if &Interaction=0 then f_0=T(I1||I2||X);

if &Interaction=1 then f_0=T(I1||I2||X||I2);

if &Interaction=0 then f_1 = T(I1||I1||X);

if &Interaction=1 then f_1 = T(I1||I1||X||X2);

E_opt = E;

*create E_opt, E_opt chooses level with lowest chance of poor outcome.

If the chance of a poor outcome is the same then macro defaults to treatment 1;

do k = 1 to n;

E_opt[k,] = 0;

M1 = exp(T(B)*f_0[,k]);

M2 = 1/(1+exp(T(B)*f_0[,k]));
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M=M1*M2;

W1 = exp(T(B)*f_1[,k]);

W2 = 1/(1+exp(T(B)*f_1[,k]));

W=W1*W2;

if W < M then E_opt[k,]=1;

end;

*X2 may be a subset of X variables;

if &Interaction=1 then EoptX = E_opt#X2;

if &Interaction=0 then f_opt = T(I1||E_opt||X);

if &Interaction=1 then f_opt = T(I1||E_opt||X||EoptX);

avg1 =0;

*P_Dopt calculation and IF1 calculation;

M1 = exp(T(B)*f_opt);

M2 = 1/(1+exp(T(B)*f_opt));

M=M1#M2;

avg1=M[,:];

IF1=M-avg1;

IF1=T(IF1);

P_Dopt=avg1;

*IF2 Calculation;

Avg2=0;

ncol = nrow(f);

Temp = I(ncol);

*avg is a matrix of zeros;

Avg3=T(Temp - Temp);

*numeric derivatives;

row_vector = j(1,r,1);

LowB = B*row_vector;

UpB = LowB;

*need these for the numric derivatives later;

do v = 1 to r;

LowB[v,v] = B[v,]-bound[v,];

UpB[v,v] = B[v,]+bound[v,];

bound2[v,]=.5*(1/bound[v,]);

end;

*numeric Derivative loop;

ND1 = B;

ND2 = B;

Do v = 1 to r;
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NM1 = exp(T(LowB[,v])*f_opt);

NM2 = 1/(1+exp(T(LowB[,v])*f_opt));

NM3 = sum(NM1#NM2)/n;

ND1[v,1] = NM3;

NM4 = exp(T(UpB[,v])*f_opt);

NM5 = 1/(1+exp(T(UpB[,v])*f_opt));

NM6=sum(NM4#NM5)/n;

ND2[v,1]= NM6;

end;

*ND is numeric approximation for partial mu/partial beta;

ND = (ND2 - ND1)#bound2;

Do k = 1 to n;

Q1=f[,k]*T(f[,k]);

Q2 = exp(T(B)*f[,k]);

Q3 = (1+exp(T(B)*f[,k]))*(1+exp(T(B)*f[,k]));

Q3=1/Q3;

Q4=(Q2*Q3)*Q1;

Avg3 = Avg3 + Q4;

end;

Avg3 = Avg3/n;

Avg3 = inv(Avg3);

IF2 = T(ND)*Avg3*f;

IF2 = T(IF2);

R1 = exp(T(B)*f);

R2 = 1/(1+exp(T(B)*f));

R=T(R1#R2);

IF2 = IF2 # (D-R);

*Put all the pieces together to get IF;

IF = ((IF1+IF2)/p_dopt)-IF3;

V = T(IF) * IF;

V = V / ((n-1)*(n-1));

V = sqrt(V);

*V is estimate of the standard error of

ln(PDstar0=1)-ln(P D=1) now need to put back together;

Ratio=P_Dopt/P_D;

AB_opt_hat = 1-ratio;

ln_ratio =log(ratio);

alpha=&alpha;

z = probit(1-(alpha/2));

*Back Transform 95% Confidence Interval;

Lower_BT =1-exp(ln_ratio + (z* V));

Upper_BT=1-exp(ln_ratio - (z*V));
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*Delta Theorem 95% Confidence Interval;

Lower_DT = AB_opt_hat - (z*ratio*V);

Upper_DT = AB_opt_hat + (z*ratio*V);

SE_AB = ratio*V;

*Output needed values;

Outvar = n || P_Dopt || P_D || AB_opt_hat ||ln_ratio || Lower_BT ||

Upper_BT ||Lower_DT || Upper_DT ||SE_AB ;

append from Outvar;

run;

********************************************************************************

*

* Start of analysis for output

*

*******************************************************************************;

Data &out;

set out;

label

Sample_Size = ’Sample Size’

ln_ratio_ = ’Log{P(D)/P(D_opt)}’

Prob_D_optimal = ’Probability D optimal’

Prob_Disease = ’Probability of Disease’

AB_opt_hat = ’AB opt hat’

Lower_BT = ’Backtransformed Lower 95% C.I.’

Upper_BT = ’Backtransformed Upper 95% C.I.’

Lower_DT = ’Delta Thm Lower 95% C.I.’

Upper_DT = ’Delta Thm Upper 95% C.I.’

Delta_SE = ’Delta Thm Standard Error’;

Proc Print data=Out label;

run; quit;

quit;

%MEND;
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