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Supplementary Data  

Simulation and model description 

Stochastic simulations were performed using MCell, version 3 [1,2] with a time step of 0.1 

µs for calcium and 1.0 µs for all other molecules. The VDCC kinetics and PMCA pump 

kinetics used in the MCell and deterministic simulations are shown in Fig. S1 and S2, 

respectively. The deterministic simulations were performed using a cubic grid with a grid 

spacing of 25 nm and a time step of 0.25 µs. Furthermore, the kinetics of the reaction 

schemes shown in Fig. S1-4 were implemented by integrating the corresponding ODE. The 

calcium (C) and buffer (Bi
j) concentrations obey a simple diffusion equation: 
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where Bi
j represent the different states of the buffer as shown in the reaction diagram of Fig. 

S3. The last terms in these diffusion equations, Gbind and H, represent to a straightforward 

incorporation of the calcium-buffer binding reactions. For example, the term involving B1
0 

in the equation for C reads B1
0 [-2k+C-k+C +k-] since B1

0 can bind calcium to transition to 

B2
0 and B1

1 and can unbind calcium to transition to B0
0. Similarly, the term in the equation 
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0 can be found by counting all arrows starting from or ending at B1

0 and reads:  
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These equations are implemented with the relevant boundary conditions at the faces of the 

simulation box. Finally, the kinetic scheme for the two models of the calcium sensor is 

shown in Fig. S4. In these schemes, F represents the fused (released) vesicle while V 
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represents the fraction of vesicles that can be released. At the start of a simulation the latter 

is set to 1 while the different states of the sensor are determined as the equilibrium values 

corresponding to a resting calcium concentration of 100 nM. The equations for the sensor 

dynamics are solved either deterministically or stochastically, using a time step of 0.1 µs. 

The sensor had a size of 66 nm2 in the MCell simulations. All rates and further relevant 

parameters are given in Table 1. 

The role of depletion 

The effect of ligand depletion can be investigated in a simple radially symmetric model in 

which a single sensor of size R0 binds ions at a rate kon. After binding, the ligand is removed 

permanently and the sensor is immediately able to rebind an ion. To obtain a non-trivial 

steady state solution we furthermore assume that the concentration at a distance larger than 

R0 (r=R1) is fixed at 

! 

C" . Within the computational box the ion concentration obeys the 

simple diffusion equation with as boundary condition at r=R0: 
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2 is the surface area of the receptor. Then, we can find the steady state solution for 

this problem as:  
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At the sensor site and for 
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giving us a binding rate of  

! 

k
on
C (R0) . Thus, the deviation of the local sensor concentration 

from the imposed concentration is controlled by the parameter combination
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: a 

smaller sensor size, a smaller diffusion constant or a larger on rate increases the depletion 
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effect. Clearly, as long as  

! 

k
on

2"DR
0

<< 1 we can safely neglect the effects of local depletion. A 

similar conclusion was reached numerically by Hake and Lines [3].  

It is important to note that the removal of calcium ions by a sensor can be incorporated in a 

deterministic model.  To this end, we include the binding of ligands as an effective flux 

term, only present as a boundary condition for the ligand concentration at the voxel that 

contains the sensor. This flux term is written as 

! 

DA"C = k
on
C  where A is the area of the 

voxel face. Through explicit simulations, we have verified that for this simplified model the 

deterministic approach gives the same steady state solution as a full stochastic calculation 

using MCell.  

We have also implemented local calcium ion removal into the deterministic simulation for 

our model synapse. The sensor was placed at 250 nm of the VDCC cluster and had a size 

equal to the grid size (25 nm). In Fig. S5 we plot the percentage difference between the 

deterministic calculation with and without local depletion as a function of the release 

probability. For our parameter values, this difference is at most 7%.   

Table 1 Model parameters 

Parameter Value 

Calcium diffusion constant (DCa) [4] 220 µm2/s  

Calbindin diffusion constant (DB) [5] 28  µm2/s   

Resting intracellular calcium concentration 100 nM 

Intracellular calbindin concentration [6] 45 µM  
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PMCA surface density [7] 180 / µm2  

VDCC number [8] 1 - 208 

Distance between the sensor and the 

VDCC cluster [9] 

10 – 400 nm 

Maximum radius of the VDCC cluster 66 nm 

 Calbindin [10]  

Association rate, high affinity site (k+) 0.55×107 /M  s 

Dissociation rate, high affinity site (k-) 2.6 /s 

Association rate, medium affinity (k+) 4.35 ×107 /M  s 

Disassociation rate, medium affinity (k-) 35.8 /s 

PMCA [7]  

Association rate (kp01) 1.5 ×107 /M  s 

Association rate (kp10) 20 /s 

Transition rate 1 (k12) 20 /s 

Transition rate 2 (k23) 100 /s 

Leak rate (kleak) 12.5 /s 

VDCC  
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Dynamics [11] 
ai(v) = ai0 exp(v/vi) and bi(v) = bi0exp(-
v/vi) 

a10, a20, a30, a40 4.04, 6.70, 4.39, 17.33  /ms 

b10, b20, b30, b40 2.88, 6.30, 8.16, 1.84  /ms 

v1, v2, v3, v4  49.14, 42.08, 55.31, 26.55 mV  

Calcium sensor model [12]  

α 0.3 /µM  ms 

β 3 /ms 

γ 30 /ms 

δ 8 /ms 

ρ 40 /ms 

 

FIGURES 

 

Fig. S1 Reaction scheme for the voltage dependent calcium channels, with O representing 

the open state. The dependence of the rates on the voltage can be found in Table 1. 
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Fig. S2 Reaction scheme of the binding of PMCA pumps (rates given in Table 1). 

 

 

Fig. S3 Reaction scheme of the binding of calcium to the buffer calbindin. Each buffer 

molecule can bind up to 4 calcium ions and the rates for the reactions can be found in Table 

1. 
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Model A 

 

Model B 

 

Fig. S4 Kinetic description of the two release models used in the paper. Model A 

correspond to a sensor that controls a single vesicle. This one-to-one correspondence is 

relaxed in model B where V is the fraction of the vesicles that are capable of being 

released.  
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Fig. S5 Difference between the release probability in a deterministic calculation with and 

without local removal of calcium ions as a function of the release probability. The distance 

between the cluster and the sensor was taken to be 250 nm. The solid line is a guide to the 

eye.  
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