
Appendix: Properties of the cellular automaton model 

 

 

- Figure Appendix-1 - 

Periodic network behavior. It is remarkable that network models with random structure and 
dynamics can exhibit periodic behavior (Traub et al., 1999; Lewis & Rinzel, 2000).  Figure 
Appendix-1 shows that the present cellular automaton model exhibits the same sort of periodic 
behavior over a range of spatial scales.  Such an observation eases worries about sampling ECoG 
data with relatively large electrodes, and with using a large number of electrodes – provided, that 
is, that one can assume that structural parameters corresponding to gap junction density and 
localization, and spontaneous spiking, are relatively constant over large expanses of cortex.  
Some insight into why this scale-independence of frequency exists is provided below, when the 
mechanism determining frequency is analyzed. 

 



 

- Figure Appendix-2 - 

Single waves grow and propagate linearly after an initial phase.  Figure Appendix-2 illustrates 
the behavior of a single wave in the cellular automaton model, in the absence of noise (after the 
initial event starting the wave).  The wave has two approximately separable phases.  At first, the 
degree of activity is limited, attributable to the fact that the wave begins with a single firing cell, 
and each cell is coupled (on average) to very few others (a mean of only 1.33).  When activity is 
sparse enough that each propagation can be imagined to occur independently of past events – 
that is, if we can assume that very few cells are occupied with firing or with being refractory, 
then it is possible to think of the cells firing at time t as resulting from a set of independent 2-
dimensional random walks (Weisstein), starting at the initial site.  The average step size for each 
random walk will be the expected value of radius r in a disk of radius cr: this latter disk covers 
the territory in which there are possible connections from the starting site (at least, in the case of 
a starting site away from the boundaries).  Thus, the average step size =  = 2 cr / 

3.  The expected distance traveled at time t will then be 2 cr t1/2 / 3, so that propagation only goes 



as the square root of time.  On the other hand, as shown by Lewis and Rinzel (2000) and 
confirmed here empirically (i.e. with many simulations), growth and propagation switch to being 
linear in time, with the wave having a refractory “wake” behind it, and propagation proceeding 
into excitable “territory” ahead of the wave – provided cr is not too large; in the very large 3D 
model, the threshold value of cr is about 50 lattice spacings: wave propagation occurs, that is, 
when cr ≤ 50.  Remarkably, the wave thickness remains approximately constant over time, for 
reasons that remain to be explored. 

 



 

- Figure Appendix-3 - 



Coalescence of waves, followed by propagation in different directions.  Figure Appendix-3 
illustrates for our a particular model a principle shown by Lewis and Rinzel (2000): two waves, 
propagating toward each other and meeting, will each have a refractory “wake”.  Therefore, the 
two waves can not pass through each other – unlike waves propagating across a pond after two 
stones have been dropped simultaneously into the pond at different spots.  Instead, the waves are 
forced to propagate in different directions (in the illustrated case, roughly at right angles to the 
original directions of propagation), into “virgin territory”, where excitable cells are available. 

A formula for estimating the oscillation period in the cellular automaton, when pspon is small.  
We have seen that the CA model generates arcing and circular wavefronts that expand away 
from a spontaneous firing.  Suppose such a wavefront is expanding from the interior of a large 
array and a wavefront meets it from the outside.  Such a collision will result in coalescence and 
continued expansion (Figure Appendix-3); it will not contribute to periodicity of the overall 
activity.  On the other hand, a new wavefront originating on the inside can never meet the 
original wavefront: the wavefronts propagate at the same velocity and one can not catch up with 
the other; even if it could catch up, the refractory wake will prevent coalescence.  Thus, the 
period will be determined by the mean rate at which wavefronts arise, from spontaneous events, 
within other wavefronts.  [Note that this rate is scale-free, if the network is large enough: 
spontaneous events within one expanding wave occur independently of spontaneous events 
within other expanding waves – hence the observation in Figure Appendix-1 that oscillation 
frequency is independent of network scale.] 



 

- Figure Appendix-4 - 

We can estimate this rate if pspon is small enough so that it is improbable that two spontaneous 
events occur within a single expanding wavefront; and if we make the approximation that wave 
propagation is strictly linear (which is not actually true at short times after a spontaneous event – 
Figure Appendix-2).  Let t be the time step, r the number of refractory steps (15 for the present 
model), and a be the number of cells the wave grows by in each time step (a = 185 in Figure 
Appendix-2).  [The quantity a will in turn depend on structural parameters <i> and cr in a 
manner to be determined in a later paper.] The number of excitable cells within an expanding 
wave at time t after one spontaneous event (i.e. the number of cells in which a new wave might 
start) will be the greater of 0 and  

a + 2a + 3a + ...+(t-r)a ~ a(t – r)2 / 2.  The expected number of spontaneous events within the 
wave at time t will be ~ pspon × a(t – r)2 / 2, once t > r. If we set the expected number of 
spontaneous events = 1, we obtain a quadratic equation in t, the larger (i.e. physical) solution of 
which is t = r + (1 / 2 a pspon)1/2.  Thus, we estimate the period as equal to the intrinsic 
refractoriness plus a term that depends on the inverse square root of certain structural parameters.  
Figure Appendix-4 shows a range of pspon for which this formula gives reasonable estimates of 



the period.  Of course, as pspon becomes large enough, then it becomes increasingly likely that 
two or more events occur within a wavefront, and the formula will diverge from simulation 
results. 
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Appendix Figure Legends 

Figure Appendix 1. Local random connectivity is consistent with periodic network behavior 
that is scale-invariant.  Simulation was of a 120,000 cell (400 × 300) cellular automaton model, 
with mean index <i> = 1.33 and pspon = 1.25×10-5 (as in Fig. 2), and cr = 25 lattice spacings.  The 
frequency of net activity in the whole array was the same as in a square sub-array that was 1/48 
the size of the original array.  Power spectra were computed from 8,192 data points.  (When the 
array size was increased 4-fold, other parameters being kept the same, the frequency also did not 
change – not shown).  In spite of the frequency invariance, complex patterns of spatial activity 
are nevertheless occurring (see below).  This simulation also suggests that using subdural grid 
electrodes, as opposed to microelectrodes, may not give a misleading measurement of frequency, 
provided oscillations are occurring in a sufficient volume of tissue. 

Figure Appendix 2. Growth and wave propagation from a single cell being “on”, in the absence 
of spontaneous activity: the initial growth can be approximated by a 2-dimensional random walk, 
but then a wave forms that grows linearly in time (until it hits an array boundary), and that 
moves linearly in time.  Simulation was from a cellular automaton model as in Figure Appendix 
1, but with pspon = 0, and with a single cell in the lower left corner set to be “on” initially.  In the 
frames at left, “on” cells are indicated by black dots.  There is a refractory “wake” behind the 
wave (red R), and the wave propagates into the territory of excitable cells (green E) (c.f. Lewis & 
Rinzel, 2000).  Graphs at the right characterize wave growth and propagation.  The upper graph 
shows that growth is linear after about 10 time steps (over the interval t = 15 to 30, the slope is 
185 cells/time step, r2 = 1.00).  Likewise, the wave moves at constant velocity after about 15 
time steps (middle graph: over the interval t = 15 – 30, the velocity is 14 lattice spacings/time 
step, r2 = 1.00).  The blue curve shows propagation expected for a 2-dimensional random walk 



with step size equal to 2/3 × cr (this is the expected value of a “jump” – see text); in a random 
walk, expected distance grows with  rather than linearly in time.  The bottom graph shows 
that the thickness of the propagating wave remains approximately constant. 

Figure Appendix 3. Coalescence of two propagating waves in the cellular automaton model (see 
also (Lewis & Rinzel, 2000).  Simulation is of spontaneous activity with parameters as in 
Appendix Figure 1, with 120,000 cells in a 400 × 300 array.  In the case shown, at t = 20, one 
wave originated near the lower left corner, and is propagating upwards and to the right, leaving a 
refractory wake behind it (red R).  The other wave originated near the upper right corner and is 
propagating downward and to the left; it also leaves a refractory wake (red R).  Each wave is 
propagating into regions of excitable cells (green E).  At t = 25, the waves meet, near the center 
of the array.  Because of the refractory wakes, they can not pass through each other, but instead 
start to propagate toward the excitable corners of the system: the upper left, and lower right.  At t 
= 30, the waves dissipate across the corners of the array.  We propose that this type of wave 
interaction characterizes pre-seizure VFO in cortex. 

Figure Appendix 4. Comparison of formula for network oscillation period with simulation data.  
For derivation of the formula, see text.  Simulations were run in a cellular automaton model with 
120,000 cells (400 × 300 array), with mean index <i> = 1.33 and cr = 25.  pspon (the abscissa) was 
varied.  The theoretical prediction is quite accurate for small pspon, although when pspon is very 
small, the accuracy of prediction is limited by statistical fluctuations.  The theory starts to 
diverge from simulation results as pspon becomes large enough; we attribute this to the occurrence 
of more than one spontaneous event within expanding waves, contrary to the assumption for the 
theory. 

 

 


