Supplemental Table 2. Irreversible rate constants (k_{obs}) for formation of open complexes as a function of $[RNAP]_{total}$ and $[Na^+]$ in Glu^- and F^- Buffers at 25 $^{o}C^a$

[Na+] (M)	RNAP (nM)	$k_{obs} (s^{-1})$	Number of determinations	
Glu	Kivii (mvi)	Kobs (S)	determinations	
0.23	1.25	$(7.3 \pm 0.4) \times 10^{-2}$		
	2.90	$(8.2 \pm 0.7) \times 10^{-2}$		
	3.16	$(1.0 \pm 0.1) \times 10^{-1}$		
	7.16	$(1.2 \pm 0.1) \times 10^{-1}$		
	8.87	$(1.60 \pm 0.09) \times 10^{-1}$		
	1.63	$(2.0 \pm 0.2) \times 10^{-1}$		
	2.14	$(2.1 \pm 0.1) \times 10^{-1}$		
	4.00	$(1.8 \pm 0.1) \times 10^{-1}$		
	4.29	$(2.1 \pm 0.2) \times 10^{-1}$		
	7.98	$(1.9 \pm 0.1) \times 10^{-1}$		
0.25	1.25	$(5.5 \pm 0.5) \times 10^{-2}$		
	2.32	$(5.4 \pm 1.0) \times 10^{-2}$		
	3.69	$(1.1 \pm 0.1) \times 10^{-1}$		
	9.48	$(1.4 \pm 0.2) \times 10^{-1}$		
	13.3	$(1.6 \pm 0.1) \times 10^{-1}$	2	
	14.4	$(1.7 \pm 0.2) \times 10^{-1}$		
	26.6	$(1.8 \pm 0.1) \times 10^{-1}$		
	51.9	$(1.9 \pm 0.1) \times 10^{-1}$		
	53.5	$(2.0 \pm 0.1) \times 10^{-1}$		
0.27	3.14	$(4.6 \pm 0.3) \times 10^{-2}$		
	5.79	$(5.1 \pm 0.6) \times 10^{-2}$		
	7.39	$(8.5 \pm 1.0) \times 10^{-2}$		
	13.7	$(9.6 \pm 0.7) \times 10^{-2}$		
	18.9	$(1.3 \pm 0.1) \times 10^{-1}$		
	20.5	$(1.4 \pm 0.2) \times 10^{-1}$		
	37.8	$(1.4 \pm 0.1) \times 10^{-1}$		
	39.2	$(1.5 \pm 0.1) \times 10^{-1}$		
	62.8	$(1.8 \pm 0.1) \times 10^{-1}$		
	65.0	$(1.8 \pm 0.1) \times 10^{-1}$		
0.29	2.95	$(3.3 \pm 0.3) \times 10^{-2}$	2	
	7.85	$(7.0 \pm 0.6) \times 10^{-2}$		
	8.01	$(6.8 \pm 0.4) \times 10^{-2}$		
	14.7	$(1.1 \pm 0.1) \times 10^{-1}$		
	16.5	$(9.9 \pm 1.1) \times 10^{-2}$		
	30.8	$(1.4 \pm 0.1) \times 10^{-1}$		
	32.9	$(1.3 \pm 0.1) \times 10^{-1}$		
	58.7	$(1.6 \pm 0.1) \times 10^{-1}$		

		62.8	$(1.3 \pm 0.1) \times 10^{-1}$	
	0.34	7	$(2.0 \pm 0.7) \times 10^{-2}$	2
	0.38	7	$(1.4 \pm 0.4) \times 10^{-2}$	
	0.42	7	$(2.1 \pm 0.3) \times 10^{-3}$	
	0.46	7	$(2.5 \pm 1.3) \times 10^{-3}$	3
	0.55	7	$(7.3 \pm 3.4) \times 10^{-4}$	2
	0.64	7	$(1.9 \pm 1.1) \times 10^{-4}$	2
F-				
	0.37	7	$(9.5 \pm 0.x) \times 10^{-3}$	
	0.45	7	$(1.6 \pm 0.x) \times 10^{-3}$	
	0.50	7	$(9.9 \pm 0.x) \times 10^{-4}$	
	0.63	7	$(4.1 \pm 0.x) \times 10^{-3}$	

^aConcentrations of RNAP are active. Values of k_{obs} determined by fitting the fraction of promoter DNA bound in open complexes as a function of time to eq 1. Unless noted otherwise, k_{obs} was determined once for each [RNAP]; associated error is from the fitting program. Otherwise, the reported error is calculated from the standard deviation ($\delta(n-1)$) of multiple values of k_{obs} . Values of k_{obs} for [Na⁺] \leq 0.29 M were determined using rapid quench mixing; manual mixing was used to determine k_{obs} for [Na⁺] > 0.29 M.