Supplementary Figure 1. Expression of β_1 subunits in transfected MDCK cells. MDCK cells expressing R β YFP were fixed and immunostained using antibodies against the rat (A, B) or dog β_1 subunit (C, D) and a Cy5 secondary antibody. (A, C) Representative images of the fluorescence of MR β YFP cells recorded at 540-575 nm. (B) Immunodetection of the rat β_1 subunit in the same optical section as that in A. Bar: 30 µm. (D) Immunodetection of the dog β_1 subunit in the same optical section as that in C. Bar: 10 µm.

Supplementary Figure 2. Expression of rat β_1 subunits in MDCK cells does not disturb the expression of adherens junction molecules. MDCK WT (A, B) and MR β YFP (C, D) cells were fixed and immunostained using a pan-cadherin antibody. (A, C) Representative image of the fluorescence produced by excitation with a 425-500 nm laser line and emission recorded 540-575 nm (according to the YFP spectra). (B, D) Typical image of pan-cadherin immunodetection obtained using Cy5 secondary antibodies detected at 650/670 nm. Bars in B and D are 30 and 20 μ m, respectively.

Supplementary Figure 3. Representative imaging of the living cells used as controls for the FRET assay. All images were obtained in the same conditions as the β - β interaction FRET after acceptor photobleaching assay. (A, D, G) CFP fluorescence following excitation at 390-425 nm and emission at 475-525 nm. (B, E, H) YFP fluorescence following excitation at 425-500 nm and emission at 540-575 nm. (A-C) MDCK cells transfected with a CFP-YFP fusion construct. ROI 3 was the photobleached region (positive control). (D-F) Co-culture of MR β CFP and MR β YFP cells. ROI 4, a membrane domain in which no YFP expression was visible, was the photobleached region. (G-I) Co-culture of MDCK cells expressing CFP alone (cytoplasmic) and MR β YFP cells. ROI 5 represents a photobleached region in which CFP-containing vesicles were close to the membrane of MR β YFP. Bars: 15 µm.

$\mathsf{MR}\beta\,\mathsf{YFP}$

Fluorescence

Immunofluorescence

Fluorescence

Immunofluorescence

Supplementary Table 1.

Interaction	D_{PRE} (%)	D _{POST} (% of D _{PRE})	%E E= $((D_{POST}-D_{PRE})/D_{POST})x100$	N	
β-β in live cells ROI 1	100	126.6 ± 2.1	21.3 ± 1.4	10	-
Negative control ROI 2	100	101.0 ± 0.9	0.8 ± 0.6	9	
Positive control ROI 3	100	113.4 ± 1.3	11.5 ± 1.1	10	
Negative control ROI 4	100	93.5 ± 2.7	0.0 ± 0.0	10	
Negative control ROI 5	100	95.4 ± 4.0	0.0 ± 0.0	10	

Table 1. Fluorescence energy transference in living MDCK cells.

The efficiency of FRET (%E) was calculated from fluorescence recovery after acceptor photobleaching assays. To evaluate β - β interaction in vivo, fluorescence intensity of CFP was measured before (D_{PRE}) and after (D_{POST}) bleaching of YFP in area including the lateral membranes of cells expressing β -YFP and contacting neighboring cells expressing a β -CFP (ROI 1, Fig. 5). D_{pre} was normalized to 100% in all cases. Positive and negative controls were calculated from ROIs described in the corresponding figures. The negative control (ROI 2) is in Fig.5; the positive control (ROI 3) and additional negative controls (ROI 4 and ROI 5) are in SI Fig 4. Means \pm S.E.M are for the number of experiments depicted as N.