
Biophysical Journal, Volume 96 

Supporting Material 

Statistical Determinants of Selective Ionic Complexation: Ions in Solvent, Transport 
Proteins, and Other ‘Hosts’ 

David L. Bostick and Charles L. Brooks III* 



Statistical Determinants of Ionic Selectivity Bostick and Brooks 

 1 

Supplementary Material  

Statistical Determinants of Selective Ionic Complexation: Ions in 
Solvent, Transport Proteins, and Other ‘Hosts’ 
 
David L. Bostick and Charles L. Brooks III* 

Department of Chemistry and Program in Biophysics  
The University of Michigan 
930 N. University Ave. 
Ann Arbor, Michigan 48109 
 
* To whom all correspondence should be addressed: brookscl@umich.edu 
 
Supplementary Theoretical Framework (STF) 
 

We provide below, for completeness, an addition to the Theoretical Framework outlined in 
the main text and Appendix. We have broken this addition into parts. In Part I, we provide a 
more explicit discussion of the reduced degrees of freedom used to treat the host in complex with 
an ion.  Part II provides a statistical rationale for the decomposition of the canonical probability 
density of an ion complexed in a host, which further elaborates on the correlation function 
written in Eq. 4. The small system grand canonical ensemble is described for the limiting cases 
of a “fluid” and a gas in Part III. A more explicit discussion of the definition of the chemical 
potential in the small system grand canonical treatment of the complex is given in Part IV. 
Finally, Part V provides definitions for various physical properties discussed in the main text.  
 
I. Degrees of Freedom in the Abstracted Ion-Host System 
 

To explain further the reduced degrees of freedom we utilize in the main text 

! 

{r
N
,R}, let us 

write all degrees of freedom in terms of the position of the ion, effectively placing the ion at the 
origin, 

! 

E(x
0
,S) = E( " S ) . In this work, we explicitly state the position, x0, (e.g. whether it is in the 

bulk or at a particular site) when it is of consequence.  
 
If we consider the protein as a set of N “coordinators” or “ligands” (generally, polyatomic or 

monatomic moieties that can coordinate an ion) covalently bonded to their protein [as depicted in 
Fig. 1 (top)], we may write 

! 

E( " S ) = E(r
N
,# N

,R) , where   

! 

r
N

= {r
1
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,K,r

N
}  are the positions of 

the coordinators (with respect to the position of the ion),   

! 

" N
= {"

1
,"

2
,K,"

N
} are the rotational 

degrees of freedom of the coordinators, and R represents the remaining degrees of freedom (all 
degrees of freedom that do not qualify as ion or coordinator), including the protein to which the 
coordinators are bonded and all solvent degrees of freedom, the membrane (if the protein is 
membrane bound, such as a channel or transporter), and all surrounding aqueous solution. 
Examples of coordinators might include carbonyl, amide, or hydroxyl groups. A coordinator 
does not necessarily consist of more than one atom. For example, it could simply be the oxygen 
atom of a carbonyl group, or the hydrogen atom of a hydroxyl group. In such cases, a carbonyl 
might be said to “coordinate” an ion if the carbonyl oxygen atom is in contact with the ion.  
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It facilitates discussion to treat the orientations of the coordinators implicitly. Thus, we may 

define a potential of mean force where the orientations are integrated 
 

! 

U(r
N
,R) = "k

B
T ln d# N

e
"$E(rN ,# N

,R)%  [S1] 

 
Though we treat these orientations implicitly, it is worth noting that they are important. For 
example, a site in a protein might enforce the orientation of coordinators possessing a significant 
dipole moment in order to determine whether a positive or negative ion will bind favorably. In 
order to address selectivity among ions of like sign in valence, however, an implicit treatment 
suffices. 
 
II. Breakdown of the Probability Density Function, ρ  

 
For the purposes of this discussion, the notation 

! 

{R,N} = {R,n,N " n} is taken to mean, “the 
event that the configuration, 

! 

{R,r
N
} = {R,r

n
,r

N"n
}, occurs.” The notation 

! 

P({A}{B})  means, 
“the conditional probability that event 

! 

{A} occurs given that event 

! 

{B} occurs.”  
 
In terms of conditional probability, one may always write (1) 
  

! 

P({R,N}) = P({R}"{N}) = P({R})P({N}{R})  [S2] 
 
Conditional probabilities in configuration space are often re-expressed for convenience in terms 
of correlation functions (2). Doing so for the right hand side of Eq. S2, we have 
  

! 

P({R})P({N}{R}) = P({R})P({N})C
R
({R,N},"

R
)  [S3] 

 
where CR accounts for the mutual dependence of events 

! 

{R} and 

! 

{N}, and 

! 

"
R

 is the coupling 
parameter defined in Eq. 4. When 

! 

"
R

=1, there is full interaction between 

! 

{R} and 

! 

{N} degrees 
of freedom (including the ion at the origin). As 

! 

"
R
# 0, 

! 

C
R
"1, and these degrees of freedom 

are fully uncoupled.  
 

Applying the logic of Eq. S2 to 

! 

P({N}) , we may further write  
 

! 

P({N}) = P({n,N " n}) = P({n})P({N " n}{n})

            = P({n})P({N " n})C
C

({n,N " n},#
C

)
 

[S4] 

 
where 

! 

"
c
 couples the interaction of the n coordinators and the ion inside v with the N-n 

coordinators inside VC. Hence, substituting Eq. S4 into Eq. S3, we may write 
 

! 

P({R,N}) = P({R})P({n})P({N " n})C
R
({R,N},#

R
)C

C
({n,N " n},#

C
)  [S5] 

 
which implies 
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as we write in Eq. 4, where the correlation function, Cn, may be expressed as a product of 
correlation functions, 
 

! 
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III. Small System Grand Ensemble: Ion Complexation in Fluid or Gas  
 

For the case of an ion in a fluid composed of coordinators (or model compounds such as 
water or, say, ethanol or formamide under prescribed macroscopic conditions) without any 
external influence (external field) of protein or other system components as shown in Fig. 
1(middle), we may follow the procedure outlined in the Appendix, but with 

! 

"
R

= 0 for the entire 
derivation. Thus, 

! 

U"

CR
(#

C
,#

R
$ 0) =U"

C
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N%n
,#

C
) , and the free energy of opening a cavity of 

volume, v, around the central ion [analogous to term (a) of Eq. A19], 

! 

"cavity # $ " cavity , refers to 
work done against only a fluid of N external coordinators (no other system components 
contribute). And, the “uncoupling” free energy [analogous to term (b) of Eq. A19], 

! 

"uncouple # $ " uncouple , refers to uncoupling only ionic interactions with all coordinators in the 
complementary volume.  

 
The surface free energy as defined in Eq. A13 becomes, for a fluid, 
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The superscript “C” (as opposed to “CR”) indicates the fact that we are dealing with an ion 
solvated in coordinators alone (

! 

"
R

= 0). Finally, the partition function for the system within the 
ion-coordination sub-volume is  
 

! 
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where 
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C

. And the probability density that the system within the sub-
volume, v, contains n coordinators with the configuration rn is  
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where, 

! 
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For completeness, we address the problem of ion complexation in a hypothetical gaseous 

environment of coordinators. In this situation, the interfacial energy, 

! 

U"

C
(r

n
,r

N#n
,$

C
% 0) = 0  

[see Fig. 1(bottom)], thus the open ionic n-complex interacts with nothing outside of the 
coordination sphere (i.e. the complex, itself, may be considered a gaseous molecule).  It will 
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require no work to form a cavity of volume, v, thus 

! 

"cavity # 0 , and since the ion is already 
uncoupled from all degrees of freedom outside the coordination sphere, 

! 

"uncouple # 0 . There is no 
excess free energy involved in removing a coordinator from a homogenous ideal gas of 
coordinators, so the chemical potential in Eq. S9 becomes 

! 

µ "#µ id = k
B
T ln(v /V ). Finally, the 

configuration integral for the complex will simply be 

! 

Z
n

0, since the ion complex has no 
interaction with external species (i.e. the interfacial free energy 

! 

"
n

C
# 0), and the partition 

function for the ionic complex surrounded by a homogenous ideal gas of coordinators is 
 

! 
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Thus, the probability density that the system within the sub-volume, v, contains n coordinators 
with the configuration rn is 
 

! 
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IV. Chemical Potential in the Small System Grand Ensemble  
 

In the Appendix and Part III, above, the chemical potential, µ, is defined in terms of the 
macroscopic system in the volume, V. As we explain in the Appendix, 

! 

µ = µ0 + "µ id , where 

! 

"µ id = k
B
T ln(v /V )  is the free energy to move an uncoupled gaseous coordinator from v to V, and 

µ0 is the free energy to insert the coordinator into a fluid of N free coordinators in V. However, 
we may also express µ in terms of the small system alone. In order to facilitate this expression, 
we make use of a common procedure [see for example refs (3-7)] to define µ in a grand 
canonical ensemble.  

 
We begin by writing the average number of coordinators in v as follows: 

 

! 

n = nP(n)
n"0

# =
z

$

z
n%1
Z
n

(n %1)!
n"1

#  
[S13] 

 
where 

! 

P(n)  is the probability to find n coordinators in the open sub-volume within an arbitrary 
medium. Let us define the potential function, 

! 

"
n
(r

n

) =U
n
(r

n

) +W
n
(r

n

), where 

! 

U  is the internal 
potential defined in Eq. A3, and 

! 

W  is an external field (such as that of Eqs. A24 or S10) 
representing the arbitrary surrounding environment. Furthermore, let us define the so-called 
“binding energy” (3,4), 

! 

"(r n ) = #
n
(r

n

) $#
n$1
(r

n$1
)  describing the interaction between a single 

coordinator in v and an n-1 complex. Note that ψ includes the influence of the system remainder 
(i.e. from the external field, W). The following well-known relation (4,8,9): 
  

! 

Z
n

= dr
n
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v

& = Z
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v exp "#%( )
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 [S14] 

 
Allows us to rewrite Eq. S13, 
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Shifting the dummy variable in the above summation, 

! 

n" n +1, we obtain (8,9) 
 

! 

n =
zv

"

z
n
Z
n

n!
n#0

$ exp %&'( )
n

= zv exp %&'( )  
[S16] 

 
Inserting the definition of the activity, z, we invert the above equation to obtain an expression for 
µ in the context of the small system, 
 

  

! 

µ = "k
B
T ln q

C
n( )

µ id

6 7 4 4 8 4 4 

"k
B
T ln exp "#$( )

µ ex

6 7 4 4 4 8 4 4 4 

 
[S17] 

 
where the first and second terms on the right hand side of Eq. S17 represent ideal and excess 
portions of the chemical potential, respectively. 
 
V. A Few Physical Properties of the Ionic Complex 

 
The development we give in this work, allows us to connect the structural parameters that are 

normally associated with ion binding via coordination (for example, coordination number and 
radius) with their probabilistic (and free energetic) implications for the binding event. Here, we 
define a few physical properties of an ion-bound complex using the concepts developed.  Given 
the probability density that an ion-coordinated complex is composed of n coordinators at 
configuration, 

! 

r
n , in an arbitrary medium, 

! 

P(n,r
n
) = P(n)"

n n( )
(r

n
) , among the most obvious 

properties are the average coordination number of the complex, 
 

! 

n = nP(n)
n

"  [S18] 

 
and the fluctuation in coordination number of the complex, 
 

! 

"
n

2 = n
2 # n

2
= n # n( )

2

P(n)
n

$  [S19] 

 
It is useful to know the probability that a particular coordinator (say, the first coordinator out of 
n) is in dr at a distance r from the ion in an ion-bound n-complex, irrespective of the positions of 
the other n-1 coordinators: 
 

  

! 

"
n
(r) = L dr2K

v

# dr
n

d$1r
2
P(n,r

n
)

$

#
v

#
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2"
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[S20] 
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where 

! 

d"
"

#  represents an integral over solid angle. The probability that a particular coordinator 

is in dr at distance r from the ion irrespective of the number of other coordinators in the sub-
volume or their positions may be written as  
 

! 

"(r) = "
n
(r)

n#1

$  [S21] 

 
With this in hand, we may define the optimal coordination radius as  
 

! 

R
c

=max
r

"(r)[ ] [S22] 
 
Note that this quantity is generally not equal to the average coordination radius 
 

! 

r = dr r"(r)[ ]
0

rc

#  
[S23] 

 
unless the binding site is in a solid phase (i.e. a crystal), in which case we can expect a nearly 
Gaussian distribution for 

! 

"(r). Finally, we may define the isothermal compressibility of the 
coordinated ion complex 
 

! 

"T = #
1

v

$v

$p

% 

& 
' 

( 

) 
* 
T

=
+v, n

2

n
2

 
[S24] 

 
which is easily derived in the context of a grand canonical ensemble(4,10) and is equal to the 
inverse of the bulk modulus, 

! 

" =1 #
T

.  
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Supplementary Text 
 
A Note on the Difference between the Order Parameters: Ravg (average coordination 
radius) and r (the coordination radius, itself – i.e. the radial position of any given 
oxygen in an ionic complex) 

 
In viewing the [

! 

""JCR
A#B

(Ravg )] profiles of Fig. 6, from the main text, one might note that, in 
most cases, the “zero-point” of neutral selectivity, judging from Table I, sometimes lies 
somewhere between the optimal hydration radii, Ropt, for ions A and B. The exception to this 
trend is the curve, 

! 

""JCR
Br#Cl

(Ravg ), which gauges selectivity for Br- over Cl-. This exception is 
explained by considering the linear probability density for finding a water oxygen atom at a 
given distance from the central ion [not to be confused with the distributions, 

! 

P
C
(Ravg ) , in Fig. 6 

– see Fig. S3]. These density functions generally reveal maxima that occur at smaller radial 
distances with respect to the distributions of Fig. 6, because the distance of closest approach for a 
single oxygen atom in a complex may be smaller than that presented by the average of Eq. 17 
presented in the main text. On one hand, the difference in maxima can be small enough for the 
resulting neutral selectivity “zero-point” to occur at nearly coincidental radial positions (e.g. see 
Figs. S3C and S3D, which yield neutral selectivity for K+ over Na+ at a radial position of 2.62 Å. 
This is comparable with the radial position of 2.66 Å – the value of Ravg derived from the red 
curve in Fig. 6B). On the other hand, the difference in maxima can be large enough such that the 
Ravg position of zero selectivity exceeds Ropt of the larger ion. For example, see Figs. S3A and 
S3B, which yield neutral selectivity for Br- over Cl- at 3.38 Å [a radial position that falls between 
the Ropt values for these respective ions – 3.23 Å for Cl- and 3.41 Å for Br- (see Table I)]. This 
value is much smaller than that derived from the red curve in Fig. 6D, 3.53 Å, which, in fact, 
exceeds the optimum coordination radius, Ropt, of Br- (3.41 Å). The similarities and/or 
differences between the points of neutral selectivity derived from the different constructs of Fig. 
6 compared with Fig. S3 should not be assigned specific meaning, because their varying results 
are merely due to a particular choice in order parameter (i.e. the parameter Ravg is not equivalent 
to the coordination radius, itself – see STF Part V, above).  
 
A Note on the Molecular Models (Force Fields) Used in this Work 
 

Our analyses make use of tested polarizable molecular models for smaller Family IA (Li+, 
Na+, K+) ions, VIIA (F-, Cl-, Br-) ions, and water (11-15). In the case of cations, we further 
explore the implications of choice in force field by performing analogous analyses of trajectories 
derived from pairwise additive models (16,17). As with similar previous analyses (18), we found 
qualitative agreement between the structural and corresponding free energetic (potential of mean 
force) results derived from simulations employing the polarizable and pairwise additive force 
fields (see the comparisons outlined in Table I, Figs. 3-4, and Fig. 5B. Also, compare the 
distributions of Fig. 5A with the analogous distributions in Fig. S1A, and the distributions of Fig. 
6A with those of Fig. S2A). Among these comparisons, the largest differences were seen in the 
case of Li+. Such differences can be expected, because the smaller; more kosmotropic Li+ ion 
should induce larger polarization of nearby water molecules. Nonetheless, the observed 
differences for Li+ do not qualitatively change the results or conclusions of this work. We extend 
our analysis to a tested model of Rb+ in the case of pairwise additive models (16,17). Given the 
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observed agreement in (polarizable and pairwise additive) population analyses for larger cations, 
we do not expect the analyses of Rb+ coordination to qualitatively change upon introduction of 
electronic degrees of freedom. However, we do not pursue validation of such expectations for 
Rb+ here. 

 
To further inform previous results pertaining to cation complexation by “bare” fictitious 

carbonyl moieties (18-23), we extended our (HCF) fluid analyses of Na+, K+, and Rb+ in the 
context of such coordinators (see Methods, and Figs. 3-5, Figs. 7-9, and Figs. S1-S2). We did not 
extend this analysis to Li+, because we expect Li+ to induce a large polarization in carbonyl 
moieties (as compared to water molecules), and because we do not pursue comparison of these 
results with polarizable models of carbonyl-containing compounds. Moreover, given that a 
fictitious carbonyl group does not represent a “real” chemical species, but a construct where a 
C=O moiety is “stripped” of two of its bonds, it can only be reasonably defined in the context of 
available pairwise additive force fields. This makes direct comparison with polarizable models 
more difficult. Nonetheless, the trends in our analyses with such models is in qualitative 
agreement with results from prior studies of carbonyl-containing compounds that include 
electronic degrees of freedom (23-26). We must note, however, that the uncoupled contribution 
to the K+/Na+ selectivity for the carbonyl HCF, 

! 

""J
C

K#Na

$1.8  kcal/mol, is similar to that 
obtained from pairwise additive models of liquids comprised of carbonyl-containing compounds, 
such as N-methylacetamide [~1.6 kcal/mol (20)] or formamide [~0.9-1.3 kcal/mol (11)]. 
However, both experimental measurements and molecular models employing electronic degrees 
of freedom suggest that the selective free energy for K+ over Na+ in organic liquids such as these 
will be lower (less than ~1 kcal/mol) or slightly negative (11,23,24,27). Given this, we might 
expect the positive shift in K+/Na+ selective free energy mappings (due to the uncoupled 

! 

""J
C

K#Na ) in Figs. 5B, 7A(right), 8A(right), and 9A(right) to be slightly lessened  upon 
incorporation of electronic degrees of freedom.  
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 Supplementary Figures 
 

 
Fig S1: Population analysis of coordination numbers for cations in SPC water or OPLS carbonyl HCF for 
models not included in the main text. (A) Quasicomponent distributions. Note that the SPC water 
distribution functions are qualitatively similar to those derived from the AMOEBA forcefield (Fig. 5A), 
although the distribution for Li+ is more broad in SPC water than observed with AMOEBA. We also note 
that the distributions gleaned from the carbonyl fluid give qualitatively similar distributions to those 
derived from either of the water models, although the carbonyl HCF distributions are slightly less broad 
(indicating a stiffer coordination shell). (B) Selective free energy (kcal/mol) for Rb+ over K+ in water and 
carbonyl HCF as a function of coordination number. The horizontal dotted lines indicate the uncoupled 
selectivity, ΔΔJC (see Eqs. 10 or 16) in each uncoupled fluid medium [zero, by definition, for water, and 
calculated to be 0.31 ± 0.04 kcal/mol in the carbonyl HCF using a thermodynamic integration protocol 
described in previous work (18)]. It is interesting to note that, at 8-fold coordination, both water and 
carbonyl HCF slightly select Rb+ over K+, indicating that, in a canonical 8-fold K+ channel binding site, 
the K+ channel protein must exert additional force on the complex to maintain a mild [SRb→K ≈1.25 
corresponding to a selectivity of -0.13 kcal/mol (28)] K+ selectivity. 
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Fig S2: Population analysis of average ion-oxygen coordination radius (irrespective of the complex 
coordination number) for cations in SPC water or OPLS carbonyl HCF. (A) Probability of attaining a 
particular average coordination radius for small monovalent Family IA cations in SPC water. As in Fig. 5 
of the main text, the distributions are reasonably approximated with Gaussian probability models except 
for that of Li+, which displays multimodality due to the tight correlation between the average coordination 
radius and the coordination number. Thus, for Li+, we show how the net distribution (closed circles) is 
largely accounted for by the 4-fold and 5-fold coordinated states taken together. The distributions are in 
qualitative agreement with those from the AMOEBA force field (see Fig. 6A). (B) Probability of attaining 
a particular average coordination radius for small monovalent Family IA cations in an OPLS carbonyl 
HCF. Only the distributions for K+ and Rb+ were modeled with Gaussians due to the skewness of the Na+ 
distribution. The Na+ raw probabilities are shown interpolated with straight lines. Note that the 
distributions are similar to those provided by both water models (see Figs. 6A and S2A). (C) Free energy 
of selectivity for Rb+ over K+ as a function of the average coordination radius. Horizontal dotted lines are 
drawn to indicate 

! 

""J
C

 for either fluid as in Fig. S1B. We note that since constraints on the coordination 
number irrespective of the configuration (Fig. S1B) produces only mild to no selectivity for K+ over Rb+, 
the steeper dependence of the selectivity on the average coordination radius shown here indicates that 
constraints on this parameter will be a more effective way to elicit selectivity for either species.  
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Fig S3: Exemplary analysis of monovalent anion and cation selectivity as a function coordination radius 
(not to be confused with average coordination radius) derived from solvated ion-water systems using the 
AMOEBA force field. (A) Linear probability density, ρ(r), for finding a given coordinating water oxygen 
atom at a given distance, r, from a Cl- (red data) or Br- (blue data) ion. Raw data are shown as points, and 
solid lines are the results of polynomial fits to the raw potential of mean force, w(r) = -ln ρ(r).  (B) Free 
energy of selectivity for Br- over Cl- as a function of the coordination radius. The point of zero selectivity 
is at r = 3.38 Å. Below this value, the hypothetical host will be Cl- selective, and above this value, the 
host will be mildly Br- selective, indicating that constraining the coordination radius, alone, is more 
effective in providing selectivity for smaller anions over larger ones (rather than vice versa). (C) Linear 
probability density, ρ(r), for finding a given coordinating water oxygen atom at a given distance, r, from a 
Na+ (red data) or K+ (blue data) ion. Raw data are shown as points, and solid lines are the results of 
polynomial fits to the raw potential of mean force, w(r) = -ln ρ(r).  (B) Free energy of selectivity for K+ 
over Na+ as a function of the coordination radius. The point of zero selectivity is at r = 2.62 Å. Below this 
value, the hypothetical host will be Na+ selective, and above this value, the host will be mildly K+ 
selective, indicating that constraining the coordination radius, alone, is more effective in providing 
selectivity for smaller cations over larger ones (rather than vice versa). 
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Fig S4: Probability distribution, P(Ravg,n), of observing a given ion-oxygen average coordination radius, 
Ravg, given attainment of coordination number, n, around K+ derived from simulations of K+ in either 
AMOEBA water (left panels) or an OPLS carbonyl HCF (right panels). These distributions were used to 
derive the selective domain mappings of Fig. 7A. Two-dimensional Gaussian probability models (top 
panels) were seen to be representative of the raw distributions (bottom panels). 
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Fig S5: Probability distribution, P(Ravg,n), of observing a given ion-oxygen average coordination radius, 
Ravg, given attainment of coordination number, n, around Na+ derived from simulations of Na+ in either 
AMOEBA water (left panels) or an OPLS carbonyl HCF (right panels). These distributions were used to 
derive the selective domain mappings of Figs. 7A and 7B. Two-dimensional Gaussian probability models 
(top panels) were seen to be representative of the raw distributions (bottom panels). 
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Fig S6: Probability distribution, P(Ravg,n), of observing a given ion-oxygen average coordination radius, 
Ravg, given attainment of coordination number, n, around Li+ derived from simulations of Li+ in 
AMOEBA water. This distribution was used to derive the selective domain mapping of Fig. 7B. A two-
dimensional Gaussian probability model (top panel) was seen to be representative of the raw distribution 
(bottom panel). 
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