Supplementary Methods: Modelling synaptic depression

The justification of the model was described previously (Wang and Manis 2008; Yang and Xu-Friedman 2008), and was based primarily on the model of Dittman *et al.* (2000), which is itself similar to models going back to Liley and North (1953). Briefly, we calculated the relative size of the i^{th} EPSC in a train of stimuli by:

$$EPSC_i = F D_i S_i \tag{1}$$

where *F* is the probability of release, D_i is the proportion of release sites that are ready to release on the *i*th pulse, S_i is the proportion of receptors that are available (i.e. not desensitized). We did not model changes in *F*, as facilitation does not appear to be present under our conditions.

The number of release-ready sites, D, is reduced by release, such that immediately after a release event, D decreases by FD_i , and then recovers to resting levels at a rate depending on a calcium-dependent process:

$$\frac{dD(t)}{dt} = (1 - D(t)) \left(\frac{k_{\text{max}} - k_0}{1 + K_{\text{D}} / CaD(t)} + k_0 \right),$$
(2)

where k_0 is the resting recovery rate, and CaD(t) is the calcium-bound state of a sensor that drives a rapid recovery process of rate k_{max} . The interaction between the rapid recovery process and the calcium-bound sensor is modelled as a simple affinity given by K_D . *CaD* increments after each EPSC, and decays to resting levels by a simple exponential, given by:

$$CaD_{i+1} = CaD_i e^{-\Delta t/\tau_{\rm D}} \tag{3}$$

These equations yield an analytical expression for D_{i+1} based on the preceding pulse:

$$D_{i+1} = 1 - (1 - (1 - F)D_i)e^{-k_0\Delta t} \left(\frac{K_D / CaD_i + 1}{K_D / CaD_i + e^{-\Delta t / \tau_D}}\right)^{-(k_{\max} - k_0)\tau_D}$$
(4)

1

where Δt is the interval between pulses.

Extracellular glutamate in the synaptic cleft drives desensitization according to a simple binding reaction:

$$S = K_{\rm S} / (K_{\rm S} + [glutamate]), \tag{5}$$

where K_S is the binding affinity of the receptor for extracellular glutamate. After the *i*th release event, the glutamate concentration increments by the amount just released (*FD_i*), and then decays exponentially back to resting levels, so that the glutamate concentration at the (*i* + 1)th pulse is given by:

$$[glutamate]_{i+1} = ([glutamate]_i + FD_i)e^{-\Delta t/\tau_s}, \qquad (6)$$

where Δt is the interval between pulses, and τ_s is the rate of glutamate clearance.

The 7 free parameters of the model were fit to recorded PPR and trains data for a given cell using a least-squares approach. Parameters for the high-, middle-, and low-depressing endbulbs are given in Supplementary Table 3.

Supplementary Table 1: Correlations between parameters measured off PPR recovery or train depression curves.

	$ au_{ m f}$	$ au_{ m s}$	$A_{ m f}$	$A_{\rm s}$	SS ₁₀₀	SS ₂₀₀	SS ₃₃₃	$ au_{100}$	$ au_{200}$	$ au_{333}$
$ au_{ m f}$	1									
$ au_{ m s}$	-0.016	1								
$A_{ m f}$	-0.52	-0.045	1							
$A_{\rm s}$	0.40	-0.48	-0.51	1						
SS ₁₀₀	-0.54	-0.14	0.16	-0.36	1					
SS ₂₀₀	-0.36	0.054	-0.076	-0.17	0.70	1				
SS ₃₃₃	0.12	0.18	-0.52	0.32	0.12	0.50	1			
$ au_{100}$	-0.65	0.36	0.17	-0.47	0.61	0.67	0.22	1		
$ au_{200}$	-0.64	0.28	0.15	-0.46	0.70	0.72	0.20	0.95	1	
$ au_{333}$	-0.53	0.31	0.035	-0.47	0.71	0.69	0.15	0.91	0.95	1

Supplementary Table 2: Principal components analysis. Rows represent the eigenvectors for each principle component X_i .

X_i	$ au_{ m f}$	$ au_{ m s}$	$A_{ m f}$	$A_{\rm s}$	SS_{100}	SS ₂₀₀	SS ₃₃₃	$ au_{100}$	τ_{200}	$ au_{333}$	Eigenvalue	Cum. var.
1	-0.32	0.13	0.11	-0.26	0.36	0.34	0.08	0.43	0.44	0.42	4.9	0.49
2	0.26	0.01	-0.58	0.38	0.04	0.31	0.59	0.05	0.06	0.08	2.1	0.7
3	-0.23	-0.8	0.13	0.35	0.36	0.17	-0.09	-0.09	-0.01	-0.06	1.4	0.84
4	-0.53	0.14	0.39	0.31	-0.37	0	0.47	0.14	0	-0.27	0.57	0.9
5	-0.27	-0.03	-0.38	0.42	-0.28	-0.41	-0.38	0.27	0.23	0.3	0.47	0.94
6	0.53	-0.14	0.42	0.21	-0.46	0.35	-0.17	0.23	0.21	0.16	0.25	0.97
7	0.34	-0.14	0.29	0.04	0.28	-0.68	0.4	0.18	0.16	0.15	0.16	0.99
8	-0.07	-0.54	-0.25	-0.59	-0.45	-0.07	0.23	0.19	0.07	-0.05	0.13	1
9	0.09	0.02	-0.08	0.03	0.18	0.03	-0.13	0.77	-0.47	-0.34	0.046	1
10	0.1	0.05	-0.12	0	0.11	-0.02	-0.13	0.03	0.68	-0.7	0.027	1

Supplementary Table 3. Parameters used for the models in Fig. 4. The model is described in detail in Yang & Xu-Friedman (2008), and the Supplementary Methods.

Parameter	Meaning	low	middle	high
F	probability of release	0.35	0.65	0.9
k_0	baseline recovery rate from depletion	1/s	0.5	0.6
$k_{\rm max}$	maximal recovery rate from depletion	20/s	27	15
$ au_{ m D}$	decay time constant for calcium-dependent recovery	10 ms	10	30
K _D	affinity of fast recovery process for calcium sensor	0.1	0.01	0.2
$ au_{ m S}$	decay time constant of glutamate clearance	5 ms	5	5
Ks	affinity of receptor desensitization for glutamate	1	1	1

Supplementary Table 4. Steady-state conductance amplitudes predicted by the three depression models at three stimulation frequencies. In addition, the rightmost column indicates the postsynaptic threshold measured in current-clamp experiments after a train of 30 pulses normalized to threshold at the beginning (N = 4 experiments).

Depression model

Frequency (Hz)	high	middle	low	Threshold
333	0.045	0.105	0.138	1.47 ± 0.12
200	0.074	0.170	0.213	1.93 ± 0.23
100	0.14	0.310	0.355	2.38 ± 0.34

Supplementary Table 5. Comparison between sibling and non-sibling inputs onto the same target bushy cell using the Kolmogorov-Smirnov (K-S) test for individual measures. Data are from 10 pairs of siblings compared against the overall distribution of distances (i.e. 190 comparisons). P values below 0.05 are highlighted in bold. The main text and Fig. 6 report the plots and P-values for measures grouped together.

Parameter	<i>P</i> -value
EPSC ₁	0.0657752
PPR (Δt in ms)	
3	0.0820644
5	0.212364
10	0.140841
20	0.249175
50	0.179377
100	0.334117
200	0.304269
500	0.334117
1000	0.101354
4000	0.349546
100 Hz trains (pulse #)	
2	0.0242287
3	0.0521546
4	0.200975
5	0.0242287
6	0.0112116
7	0.00592289
8	0.0221065
9	0.00529738
10	0.020144
11	0.00820421
12	0.0037559
13	0.0183318
14	0.0881462
15	0.0289917
16	0.00205284
17	0.0112116
18	0.0183318
19	0.0265205
20	0.00529738
200 Hz trains (pulse #)	
2	0.0221065
3	0.00592289
4	0.0443896

5	0.0289917
6	0.0316522
7	0.0443896
8	0.140841
9	0.0564202
10	0.275905
11	0.159329
12	0.108498
13	0.249175
14	0.304269
15	0.464839
16	0.0242287
17	0.0481476
18	0.0564202
19	0.628767
20	0.108498
333 Hz trains (pulse #)	
2	0.020144
3	0.0183318
3 4	0.0183318 0.212364
3 4 5	0.01833180.2123640.319018
3 4 5 6	0.01833180.2123640.3190180.189984
3 4 5 6 7	0.01833180.2123640.3190180.1899840.289892
3 4 5 6 7 8	0.01833180.2123640.3190180.1899840.2898920.289892
3 4 5 6 7 8 9	0.01833180.2123640.3190180.1899840.2898920.2898920.159329
3 4 5 6 7 8 9 10	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.108498
3 4 5 6 7 8 9 10 11	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.1084980.289892
3 4 5 6 7 8 9 10 11 12	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.1084980.2898920.51742
3 4 5 6 7 8 9 10 11 12 13	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.1084980.2898920.517420.554358
3 4 5 6 7 8 9 10 11 12 13 14	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.1084980.2898920.517420.5543580.304269
3 4 5 6 7 8 9 10 11 12 13 14 15	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.1084980.2898920.517420.5543580.3042690.482079
3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.1084980.2898920.517420.5543580.3042690.4820790.249175
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.1084980.2898920.517420.5543580.3042690.4820790.2491750.249175
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.1084980.2898920.517420.5543580.3042690.4820790.2491750.200975
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.01833180.2123640.3190180.1899840.2898920.2898920.1593290.1084980.2898920.517420.5543580.3042690.4820790.2491750.2009750.349546