Supporting Information

Hye-Ryong Shim et al. 10.1073/pnas.1000806107

SI Text

SI Materials and Methods. Cell culture, cloning, and virus generation. Sf9 insect cells were maintained in suspension in HyQ-SFX media (HyClone) supplemented with 8% (v/v) heat-inactivated FBS. Hi5 insect cells were maintained in HyQ-SFX without serum. N-acetylglucosaminyltransferase I (GnTI)-deficient Human Embryonic Kindey-293 (HEK293 GnTI⁻) cells (1) were maintained in CDM4HEK293 media (HyClone) supplemented with 4% heat-inactivated FBS. For pro-PDGF-A, the cDNA fragment encoding residues 1-183 plus a C-terminal 6-His-tag was subcloned into the pVL1393 vector (Invitrogen). For the PDGF-B/ PDGFR^β complex, the cDNA fragments encoding the ectodomains of human PDGFR^β (residue 1–314) and human PDGF-B (residue 1-185), attached to a C-terminal seven-histidine tag, were subcloned into the baculovirus mediated mammalian cell gene transduction (BacMam) vector pVLAD6 (2). The constructs and the BacVector-3000 baculovirus DNA (EMD Chemicals) were used to cotransfect sf9 cells in six-well plates in the presence of the InsectGeneJuice transfection reagent (EMD Chemicals). After incubation of the transfected cells at 27 °C for 5 days, the resulting low titer virus stock was harvested, and was used to infect Sf9 cells at 2×10^6 cell/mL for amplification.

Protein expression and purification. For propeptide-bound PDGF-A, three liters of hi5 cells were grown to a density $1.8 \times$ 106 cells/mL and infected with amplified virus at an Multiplicity of Infection (MOI) of 10. After 66 h, the recombinant proteins in the supernatant were captured by the Talon® metal affinity resin (Clontech) and eluted with 300 mM imidazole pH7.5. To obtain fully cleaved PDGF-A/propeptide complex, the above supernatant was incubated at room temperature for 3 d before the histagged proteins were captured by the Talon resin. For the PDGF-B/PDGFRβ complex, the amplified PDGF-B and PDGFRβ BacMam viruses were used to infect 1-6 liters of HEK293 GnTI⁻ cells individually at a density of $1.0-1.5 \times 10^6$ cells/mL. After 72 h, the cells were pelleted, and the supernatants were mixed at appropriate ratio. The complex were captured by the Talon affinity resin and eluted with 300 mM imidazole pH 7.5. The eluted PDGF-B/PDGFRβ complex was glycan-minimized using Endoglycosidase-F1 (SIGMA) and treated with bovine carboxypeptidase-A (SIGMA) for his-tag removal. All the proteins were further purified with size exclusion columns (Superdex-200, Amersham Biosciences) preequilibrated and eluted with Hepesbuffered saline (HBS) buffer (10 mM Hepes pH7.5, 150 mM NaCl), and concentrated to 10 mg/mL.

Crystallization.

Crystallization was performed using the sitting-drop vapor diffusion method at 22 °C, with the drops containing equal volumes of protein solution and reservoir solution equilibrated against the reservoir solution. For the PDGF-A/propeptide complex, the

 Dukkipati A, Park HH, Waghray D, Fischer S, Garcia KC (2008) BacMam system for highlevel expression of recombinant soluble and membrane glycoproteins for structural studies. *Protein Expr Purif* 62:160–170. reservoir solution is 1.0 M sodium citrate, 0.1 M imidazole, pH 8.0. For the PDGF-B/PDGFR β complex, the reservoir solution is 0.84 M (NH₄)₂HPO₄, 0.1 M imidazole, pH 8.0.

X-ray diffraction and data processing. Crystals were cryoprotected in the presence of 30% glycerol in the mother liquor and immediately flash-cooled in liquid nitrogen. X-ray diffraction data were measured at the LS-CAT beamline 21-ID-D, Advanced Photon Source (APS), Argonne, IL. The data were indexed, integrated, and scaled with HKL2000 (3). The PDGF-A/propeptide crystals belonged to the spacegroup P2₁2₁2₁, with cell dimensions a = 50.84 Å, b = 119.21 Å, and c = 146.71 Å. The PDGF-B/PDGFR β crystals also belonged to the spacegroup P2₁2₁2₁, with cell dimensions a = 78.47 Å, b = 116.82 Å, and c = 134.15 Å.

Structure determination and refinement. To determine the structure of the PDGF-B/PDGFR_β complex, the PDGF-B dimer and the second immunoglobunin domain (D2) of PDGFR β in the complex were located using the molecular replacement program PHASER (4), with the free PDGF-BB structure (PDB ID: 1PDG) and the D2 domain of VEGFR1 (PDB ID: 1FLT) as the search models. After the PDGF-B dimer and PDGFRβ-D2 were located, PDGFRβ-D1 was manually placed by superposing KIT-D1-D2 (PDB ID: 2O26) onto PDGFRβ-D2. The molecular replacement phases were improved with twofold noncrystallographic symmetry (NCS) averaging, as implemented in the program CNS (5), generating 2Fo-Fc electron density maps in which PDGFRβ-D3 was clearly discernible. To determine the structure of the PDGF-A/propeptide complex, the PDGF-A dimer in the complex was located using the molecular replacement program PHASER (4), with the free PDGF-BB structure (PDB ID: 1PDG) as the search model. After obtaining the initial phases, the propeptides were manually traced from NCS-averaged electron density maps. The models were rebuilt using COOT (6), and subjected to simulated annealing, minimization, and group B factor refinements with CNS (5). Water molecules were automatically added with CNS and validated with electron density maps.

Isothermal titration calorimetry. Calorimetric titrations were carried out on a VP-ITC calorimeter (MicroCal) at 30 °C and the data were processed with MicroCal Origin 5.0 software. Before titrations, all proteins used were buffer-exchanged into an identical lot of HBS buffer (10 mM Hepes pH7.5, 150 mM NaCl) using gel filtration to control buffer heat dilution effects. The protein samples were thoroughly degassed before the experiments. Because PDGFRs can be expressed at higher levels than the ligands, the receptor proteins were chosen as the titrants, and the ligands were placed in the reaction chamber during the experiments.

- Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol* 276:307–326.
- 4. McCoy AJ, et al. (2007) Phaser crystallographic software. J Appl Cryst 40:658-674.
- Brunger AT, et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D 54:905–921.
- Emsley P, Cowtan K (2004) COOT: model-building tools for molecular graphics. Acta Crystallogr D 60:2126–2132.

Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous Nglycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA 99:13419–13424.

Fig. S1. Recombinant PDGFs contain noncovalently associated propeptides. (*A*) Gel filtration analysis of the complex between the propeptide and mature PDGF-A, comparing wild type and a cleave site mutant with unprocessed pro-PDGF-A. (*B*) SDS-PAGE of the recombinant PDGF-B and PDGF-D proteins captured by C-terminal his-tag, showing that PDGF-B and PDGF-D also have noncovalently associated propeptides of similar length. (*C*) The mature PDGF-B:PDGFRβ complex purified from expression constructs containing the PDGF-B prosequence, showing that the receptor can displace the prosequence from mature PDGF-B. This complex was subsequently used for crystallization and structure determination. (*D*) Sequence alignment of the regions preceding the growth factor domains of PDGFs, showing that the hydrophobic residues important for binding the growth factor domain are conserved in the PDGF prosequences.

Fig. 52. The NCS-averaged, SIGMAA-weighted 2*Fo-Fc* electron density maps of the PDGF-B:PDGFR β -D1-D3 complex. (*A*) The fitting of the C α traces of the final model to the electron density map. (*B*) A close-up view of the PDGF-B:PDGFR β -D1-D3 interface, focusing on the cluster of hydrophobic residues from both the ligand and the receptor. The carbon atoms for the protein models are colored pink for the receptor, yellow and green for PDGF-B.

Fig. S3. Comparison of the PDGF-B:PDGFR β complex with related structures. (A) Side-by-side comparison of the PDGF-B:PDGFR β -D1-D3 complex, the SCF/KIT-D1-D3 complex, the M-CSF/FMS-D1-D3 complex, and the VEGF-C/VEGFR2-D2-D3 complex, showing that the D3 positions in these complexes are roughly similar. (*B*) The D1–D2 modules of KIT and FMS can be superposed to that of PDGFR β , with an rms deviation of 2.2 Å between KIT and PDGFR β for 104 matching C α atoms, and an rms deviation of 1.9 Å between FMS and PDGFR β for 97 matching C α atoms. (*C*) The difference between KIT, FMS, and PDGFR β lies primarily in the orientation of D2, which leads to dramatically different positions of D1, as revealed by the overlaying of their D3 domains. The rms deviation is 2.4 Å between KIT-D3 and PDGFR β -D3 for 47 matching C α atoms, and is 2.3 Å between FMS-D3 and PDGFR β -D3 for 54 matching C α atoms. (*D*) Superposition of the PDGF-B:PDGFR β complex with the PDGF-A/propeptide complex by overlaying the PDGF-B, showing that PDGFR β and the propeptide occupy overlapping sites on PDGF-B: The superposition of the two complexes also shows that the PDGF-A and PDGF-B L1 loops have similar conformations. The rms deviation is 1.2 Å between PDGF-A and PDGF-B for 172 matching C α atoms.

A	hPD hPD hPD hVE hVE	GI GI GI GI GI	TB TA TC TD TA TC	AF			E	G	G G	Q Y	NN				L .NDVK	LIRKISI			1 PEEDVE			RANK	EVSY C	CCCCCC	KKTTHM		2TTNNEE	0 EVFYTV	VISSLC			SPRRFG	REEQK		3 I VKKPG		R P	T - -						
	hPD hPD hPD hVE hVE	GI GI GI GI GI	FB FA FC FD FA FC			VVLLVV	EELLPS			000000	50 S T G G G G G	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		AG	000000	CCCGCC			N S C W G G	V V NRLL	QKESEQ		P P C C P N	TSVNTT	QRPSES	VHSGET		RRTVIL	PSKKTS			RAEEMF				VVRE - P	RRPHL	80 KKKG - S	HQQ		- - - - -	GR -	VG	RR
	hPD hPD hPD hVE hVE	GI GI GI GI GI GI	TB TA TC TD FA FC	K F G L A F	R H H G G	FLKMQ	KKSAHK			VVVI MI	90 T R A Q S S				LLEENT	AEERKS				TCCPS	VTRSKI	ASGSK																						
В	hPD hPD hVE hVE	GF GF GF	Rb Ra R1 R2	S S G L	- SP	- GS	- (S V S		- SKD				LSS	PPLI	P I N I Q I	G F NGT		L K H L	V V I T			SNGN	SQT	T S T T	50 F : L I		TRQT	CCCC	S OF O	GEEGG	ASAR	PEAD	60 V V V S H M L C		VE VQ VS VL	RYLW	PPP	S O M S E I N I		PESS	70 PEKG	QISES		N DEC
	hPD hPD hVE hVE	GF GF GF	Rb Ra R1 R2	A K V E R V	AISE	QRIV			- A S	CD	GI	E N	NG	NK	Q I	G I G L F C	SO F F SK	SVTT	STLL			LVTK	TSAV	NSQI	90 L 3 A 1 G 1	T G S A N -		DHHD		GELGGA	YYYY	FTSK	100 C T C Y C F	HY YY	NNL -	DHA-	STV	R Q	G L	HEKR	11 TNKE			
	hPD hPD hVE hVE	GF GF GF	Rb Ra R1 R2	R K G R E S A S	RHAV		Y Y Y Y	FYF/Y		PPSQ			VVRS	GAPP	FIFI			30 G I Y V	AMSS		E - D - F	L Y E G	F L I V	I V I V	F I I ' H I Y I			N			ESET	I A L V		PPPP	0000	15 R R R L	0 V T V G			GENN	T			
	hPD hPD hVE hVE	GF GF GF	Rb Ra R1 R2	160 L H L K L C	ENKA	K S F R	K (E (P L Y F		××.	APTR		170 		- GG	K I N I	RIRI	/ P - I S	YYWW		H G S I S I			FFFF	18 S N I T		S N	- A Y	T			D V I	R G G	SY PY LL	TF	10000	OKEEE	AAA		0444		RKHE	EKIS		200 2 2 2 2 2
	hPD hPD hVE hVE	GF GF GF	Rb Ra R1 R2	S D T I T N S I	P M	Y F Y	Y N N N L T	/ Y / Y / H / V	R	LLQV	210 Q \ K / G \		SSI	I E I Y	- D			SESS	V MT P	NEPIS	220 A L R F H C		TTKE	V V L L		RG R- V-	GGGG	EEHE	230 N T K			MTNN	C I C # C T C T	VVAA	FTR	G N T T	24 N P E	0 E - L I	TN	VR				
	hPD hPD hVE hVE	GF GF GF	Rb Ra R1 R2	WT WT WS WE	YYYY	25 P P P			SKNH	GGKQ	R-K-R	L	VGVL	EIRV	26 P 1 T 1 R 1 N 1	0 V T R I R I		- - K	т	FIQQ			MPHE	P S A M	27 Y I I I N I K I	0 HI KL KF	R V Y L	SYSS		T	V	PPDD	280 S A E A K N G V	ETG	LVNR	EKKS	DDDDD	SC	GIGL	YYYY	29 T E T T			~~~~
	hPD hPD hVE hVE	GF GF GF	Rb Ra R1 R2	T E R C R S S S	SAGG	V T -	N [R E - F	3 + > 5		DEKK	E H M H S N		V	NTSF		3 S N H I R	810 / V / H / H	EEDE	SKKK	G G A P																								

Fig. S4. Sequence alignment of PDGFs and PDGFRs, with VEGFs and VEGFRs included for comparison. The interface-contributing residues in the PDGF-B: PDGFRβ complex are shaded in green. The interface-contributing residues in the VEGF-C:VEGFR2 complex are shaded in cyan. The PDGF-A residues involved in propeptide-binding are shaded in orange.

Fig. S5. Comparison of the PDGF-B:PDGFR β -D1-D3 complex and the VEGF-C:VEGFR2-D2-D3 complex by superposition of the ligands PDGF-B and VEGF-C, showing that the receptor D2 and D3 domains have roughly similar orientations, and the D2 domains are the most different, due to the structural differences between PDGF-B and VEGF-C. The rms deviation is 1.7 Å between VEGF-C and PDGF-B for 132 matching C α atoms. The L1 and L3 loops of PDGF-B and VEGF-C are highlighted as thicker tubes.

Table S1. Data collection and refinement statistics

	PDGF-B/PDGFRβ complex	PDGF-A/propeptide complex
Data collection		
Spacegroup	P212121	P212121
Unit cell (a, b, c) (Å)	78.47, 116.82, 134.15	50.84, 119.21, 146.71
Wavelength (Å)	0.9786	0.9786
Resolution range (Å) (highest resolution shell)	20–2.3 (2.4–2.3)	30-2.4 (2.55-2.4)
Unique reflections	54,767	45,306
Completeness (%)	98.8 (97.7)	98.1 (97.9)
I/σ (I)	14.3 (3.3)	15.6 (3.5)
Redundancy	4.0	5.7
R _{merae} (%)*	7.8 (32.7)	6.8 (37.7)
R _{meas} (%)*	6.2 (42.6)	7.4 (44.6)
Refinement		
Resolution range (Å) (highest resolution shell)	20–2.3 (2.4–2.3)	20–2.4 (2.55–2.4)
R _{crvst} [†]	0.238 (0.342)	0.225 (0.385)
R _{free} ⁺	0.278 (0.359)	0.276 (0.389)
Average B factor (Å ²) (protein, solvent)	66.3, 69.3	65.4, 68.7
rmsd bond length (Å)	0.009	0.009
rmsd bond angle (°)	1.6	1.5
Ramachandran (favored, allowed, generally allowed, disallowed) (%)	85.2, 13.4, 1.4, 0	85.9, 12.9, 1.2, 0

 $*R_{merge} = \sum_{hkl} |I - \langle l \rangle | / \sum_{hkl} I, \text{ where } I \text{ is the intensity of unique reflection } hkI, \text{ and } \langle l \rangle \text{ is the average over symmetry-related observation of unique reflection } hkI. R_{meas} \text{ is redundancy-independent } R \text{ factor.}$ $*R_{cryst} = \sum |F_{obs} - F_{calc}| / \sum F_{obs}, \text{ where } F_{obs} \text{ and } F_{calc} \text{ are the observed and the calculated structure factors, respectively. } R_{free} \text{ is calculated using } 5\% \text{ of reflections sequestered before refinement.}$

Table S2. Contacts between the propeptide and PDGF-A

		The protruding	PDGF-A	The recedi	The receding PDGF-A protomer					
The propept	ide	protom	er	pro						
			 Salt bridg	es						
Glu22		Arg159	J			3.1				
		5	Hydrogen b	onds						
Leu33	0		, ,	Asn134	ND2	2.9				
Ser36	0			Asn134	ND2	2.8				
lle41	Ν			Glu90	OE1	3.2				
			Van der Waals	contacts						
Glu	22	Arg159								
Ala	23	Tyr157, Arg	159							
Glu	24	Asn116, Tyr	157							
lle2	25	Asn116, Glu156,	, Tyr157							
Pro	26	Tyr157, Lys	160							
Val	29	Tyr157								
lle3	80	Leu118								
lle3	80				Thr135, Ser137					
Arg	32	Tyr157								
Leu	33	Leu118			Asn134, Thr135	5				
Ala	34				Asn134, Val138	3				
Ser	36				Asn134					
Gln	37				Asn134					
lle3	88	Trp120								
His	39	Trp120								
Ser	40	Trp120			Glu90					
lle4	1	Trp120, Lys151,	Val152,		Glu90					
		Ala153, Va	1155,							
		Leu164, Gl	u166							
Leu	44	Irp120, Ala153,	Leu164,							
		Glu166)							
Leu	48	lyr157, Pro	162							
Glu	49	Pro162								
lles	50	Pro162								
Leu	53	Leu164								
Arg	83 84	Glu166			11-00					
Arg	84				llexx					
Lyst	35 90				lless					
Arg	00				liess					

PNAS PNAS

PDGFRβ		The protruding PDGF-B protomer		The receding PDGF-B protome	er	Distance (Å)
			Salt brid	ges		
Glu133		Lys81				3.4
Lys163				Glu15		3.3
		Н	ydrogen	bonds		
Asp185	OD2			Asn55	ND2	2.5
Arg186	NE			Cys99	0	3.0
Arg186	NH2			Cys99	0	3.1
Arg186	0			Asn54	ND2	3.1
Val206	0			Asn54	ND2	2.9
Tyr207	OH			Asn55	OD1	3.2
Glu241	0	Arg27	NH1			2.8
Glu241	0	Arg27	NH2			2.5
Val243	Ň	Ala35	0			2.7
Val243	0	Asn36	N			3.1
Asn244	001	Asn34	ND2			2.8
Pho2/15	N	Asn34				2.0
Thr262	N	Δra32	0			27
Thr262	0	Arg32 Arg28	NH1			2.7
Sor296	õ	Arg20	N			2.0
561290	0	Alg/ 3	dor Waalı	contacts		2.9
Ala1	22	Vall		Ara73 Ph	0.84	
Clu1	JZ 22			Brogg Lycg1	Dho94	
Bho1	22 26			F1002, Lysol Dba94 Ara7	$r_{r} = 1004$	
Phe 136				Prieo4, Arg7:	5, 11p40	
Phe I	38			lie/7, Leu38, Pr	082, Lys80	
Inri	40	CL 45		Lys80		
Lysie	63	Gluis				
Lys10	64	Glu15				
Glui	84		•			
Asp1	85	Asn54, Asn55, Asn57, Val5	8			
Arg1	86	Asn54, Lys98, Cys99				
Tyr20	05	Asn54		Trp40	1	
Val2	06	Asn54				
Tyr20	07	Asn54, Asn55		Leu38	3	
Arg2	08	Asn55, Asn57				
Glu2	41	Asn55		Arg27, Le	eu38	
Val24	42			Arg27, Ala35, As	m36, Phe37	
Val24	43			Ala35, Asn36	i, Asn34	
Asn2	44			Asn34, As	sn36	
Phe2	45			Asn34	1	
Pro2	60			Thr33, Ai	ʻg32	
Val2	61			Arg32, A	rg28	
Thr2	62			Arg32, Thr33, As	m34, Arg28	}
Phe2	64			Arg27	, -	
Tyr2	70	Arg56		5		
lle27	72	5		Ala35	5	
Ser2	96			Val78		
Val2	97			lle77		

Table S3. Contacts between PDGF-B and PDGFR $\!\beta$

PNAS PNAS