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1 Potentials in non-equilibrium, non-integrable

systems

In the gene circuit (Eq. (1)and(2)):

dx/dt = F(x) (1)

the vector F(x) is the force that drives the system. However, the force

F(x) cannot in general be written as a gradient of a potential U , F(x) 6=
−grad(U) for systems of more than one dimensions. In other words, F(x) is

not a pure gradient of a potential, but there is another force, Fc stemming

which contributes to the dynamics:

F(x) = Fc −D ∗ grad(U) (2)

where D is the diffusion coefficient tensor. It is not easy to separate

these two components of the driving force, i.e., to calculate Fc and grad(U).

However, in a stochastic system in which each state x is described probabilis-

tically, the information about the probability in time and in steady state to

find the system in state space position x, P (x) can be found by either solving

the corresponding probabilistic equation (master equation or diffusion equa-

tion) or through Monte Carlo simulations. We would like to explore how

information on the steady state probability distribution will correlate with

the dynamics of the system.

In the equilibrium case, the potential and equilibrium probability is linked

by the Boltzman law:

U(x) ∼ −ln(Pss(x)) (3)

The question is how the two quantities, Fc and U are connected in non-

equilibrium systems like gene regulatory circuits. The statistical description

is justified because of the stochastic fluctuations in x, or ”gene expression
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noise” [1, 2]. The effect of such molecular noise on gene circuits has been

widely studied theoretically and experimentally where the probability distri-

bution P (x) is often estimated from snapshot measurements of xi in random

ensembles of gene circuits, i.e., in cell populations. We can now, instead

of the deterministic dynamical equations, explore the corresponding proba-

bilistic dynamics which is governed by the Fokker-Planck equation for the

temporal evolution of the probability distribution P (x):

∂P (x1, x2, t)

∂t
= − ∂

∂x1

[F1(x1, x2) ∗ P ]− ∂

∂x2

[F2(x1, x2) ∗ P ]

+
∂2

∂x1
2
[D(x1, x2) ∗ P ] +

∂2

∂x2
2
[D(x1, x2) ∗ P ] (4)

Eq.(4) essentially describes the probability P for finding the circuit state

S = x(t) in the state space as it moves driven by the drift (first two terms on

the right hand side in Eq. (4)), representing the interactions defined by F

in Eq (1), and by noise that can be represented as ”diffusion in state space”

(last two terms on the right hand side in (4)). For simplicity, D is chosen to

be a constant.

It is more intuitive to describe the evolution of the probability density in

terms of the probability flux J(x, t) in x at t. Thus, because of continuity,
∂P
∂t

= −∇ · J(x, t) , where J(x, t) = F ∗P −D ∗ ∂
∂x

P . At steady state ∂Pss

∂t
=

−∇ · Jss(x, t) = 0. While the divergence of the steady state probability flux

Jss , Jss(x, t) , must vanish (divergence free), the flux Jss itself does not need

to vanish in non-equilibrium systems. This is because due to the constraints

in the non-equilibrium system, detailed balance does not necessarily hold.

Only for equilibrium systems, where the detailed balance is satisfied, is Jss =

0. Thus, from the definition of J(x, t) one can write for the steady state

F = J/Pss + D ∗ grad(Pss)/Pss
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= J/Pss −D ∗ grad[−ln(Pss)]

= Fc −D ∗ grad(U) (5)

Here, Fc = J/Pss reflects the additional force linking to the non-vanishing

flux, and Fc stands for curl force. The probability flux is divergence free due

to the steady state conditions. Divergence free flux has no sinks or leaks, and

therefore, does not have a place to start or end. It is in this sense that the flux

has a curl nature, rotating around. Importantly, in Eq.(5), we have decom-

posed the force driving the dynamics of the system into two terms [3]. One

is the curl force Fc and the other is the gradient of the potential U where

U is linked with the steady state probability grad(U) = −grad[ln(Pss)].

This allows us to naturally introduce the non-equilibrium landscape U as

U ∼ −ln(Pss) similar to the equilibrium situation, Eq.(3). The difference be-

tween equilibrium systems (i.e., protein folding) and general non-equilibrium

systems (i.e., regulatory circuits or networks) is that although the poten-

tial is linked to the steady state probability in a similar way in both cases,

the dynamics of the equilibrium system follows a gradient of the potential

whereas the dynamics of the non-equilibrium systems is governed by both

the gradient of the potential as well as the curl flux [3]. Thus, the major

difference between equilibrium and non-equilibrium dynamics lies in how the

potential (or steady state probability) is linked to the dynamics.

2 Solving the diffusion equation

We use basic finite difference methods for approximating the solutions to the

diffusion equations. A two-dimensional square space is divided into square

lattice boxes with a space h and the mesh points (x1,i, x2,j) = (ih, jh), i(j) =

0, 1, ..., N . within the region. The diffusion equation makes use of first and

second differences in the t direction. Let τ denotes the length of a time step,

so that t = tk = kτ(k = 0, 1, ...,M). Then P k
i,j denotes the P value on mesh
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point (x1,i, x2,j) at time tk , and F k
1,i,j denotes the F1 value on mesh point

(x1,i, x2,j) . We used a difference scheme that corresponds to Euler’s method

for the equation:

P k+1
i,j − P k

i,j

τ
= −P k

i,j(
F k

1,i+1,j − F k
1,i−1,j

2h
+

F k
2,i,j+1 − F k

2,i,j−1

2h
)

−F k
1,i,j

P k
i+1,j − P k

i−1,j

2h
− F k

2,i,j

P k
i,j+1 − P k

i,j−1

2h

+D(
P k

i+1,j − 2P k
i,j + P k

i−1,j

h2

+
P k

i,j+1 − 2P k
i,j + P k

i,j−1

h2
)

= Y (x1,i, x2,j, tk) (6)

Starting with the initial conditions which we can choose, we can step from

any value of t to t + τ with P (x1, x2, t + τ) = P (x1, x2, t) + τY (x1, x2, t) for

all of the mesh points x1, x2 in the region. The boundary conditions provide

the values on the boundary or outside the region. We obtain almost identical

results by using both the Neumann and Dirichlet boundary conditions. This

method is explicit because each new value of P can be computed directly

from values of P at the previous time step. More complicated methods are

implicit because they involve the solution of systems of equations at each

step. If we now bring all the P k+1 to the left-hand side and use the vector

notation

P k =


P k

11 P k
12 .. P k

1N

P k
21 P k

22 .. P k
2N

: : .. :
P k

N1 P k
N2 .. P k

NN

 (7)

we obtain the value of P by solving the equation of the form

AP k+1 = CP k (8)
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We solved the diffusion equations with the help of Vcell software [4]. In

the present case we used the square region with 0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 3,

and the Neumann boundary condition. If the time step exceeded a critical

value by even a small amount, the system apparently becomes instable. In

this model, the time step used was 0.01s to keep the system stable.

3 Brownian Dynamics (alternative procedure)

The global robustness of the network was studied by starting from a network

of chemical reactions in noisy fluctuating environments:

ẋ = F(x) + ζ (9)

where x = (x1(t), x2(t))is the concentration vector, with each compo-

nent of which representing different protein species in the network. Then,

F(x) = (F1(x), F2(x)) is the chemical reaction rate flux vector involving the

chemical reactions which are often non-linear in protein concentrations x

(for example, enzymatic reactions). The equations ẋ = F(x) describe the

averaged dynamical evolution of the chemical reaction network. Since within

the cell the fluctuations of concentrations can be significant due to intrinsic

and extrinsic noise [1] and in general can not be ignored, the noise term ζ

is added for which Gaussian distribution is assumed (from the central limit

theorem in statistics). Then the auto-correlations of noise is given by:

< ζ(x, t)ζτ (x′, t′) >= 2D(x, t)δ(t− t′) . (10)

Here δ(t) is the Dirac delta function and the diffusion matrix D is explic-

itly defined by < ζi(t)ζj(t
′) >= 2Dijδ(t− t′). The average < ... > is carried

out with the Gaussian distribution for the noise.

We will follow the Brownian dynamics trajectories with multiple different

initial conditions by solving the above stochastic differential equations itera-
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tively [5]. We focus on the long time steady state properties and collect the

statistics to obtain the steady state distribution function P (x) for the state

variable x (representing the protein concentrations of the cell fate network in

this case). P (x) is exponentially related to potential energy function U(x):

P0(x) =
1

Z
exp{−U(x)/D} , (11)

with the partition function Z =
∫

dx exp{−U(x)/D}. From the steady-

state distribution function, we can therefore identify U(x) as the generalized

potential energy function of the network system. In this way, we map out

the ”potential” energy landscape.

We calculated the Brownian dynamic trajectory of the movement using

the Euler method. The length of each step was 0.3. The total steps are taken

as 108 and the total ’jump’ number for one parameter is more than 100. The

two-dimensional space was then divided into lattice boxes which extended

from the minimum value 0 to its maximum value 3 with steps of 0.01. The

108 points of data are put into the each lattice. The distribution P (x) is

then computed from the number of point inside each lattice box. The state

of the lattice box with the most points is identified as the steady state for the

system. The density distribution is the probability of each energy interval.

4 Transition Time, Barrier Height and Ro-

bustness

The stability of the network is related to the escape time from the basins

of attraction. The easier it is to escape from the basins, the less stable of

the network. For the probabilistic description of the network, the mean first-

passage time for escape τ(x1, x2) starting from the point (x1, x2) obeys [6]:

F1
∂τ
∂x1

+F2
∂τ
∂x2

+D(∂2τ
∂x2

1
+ ∂2τ

∂x2
2
) = −1. It is essentially the average time it takes

from a initial position to reach a given final position. The equation can be
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solved by an absorbing boundary condition at the given site and reflecting

boundary conditions for the rest.

In Brownian Dynamics, the passage time was defined as the number of

steps it takes the cell fate model to move(jump) from one state to another

state. We calculated the mean passage time(MPT) τ during which the cell

is in its S∗
C ,S∗

A or S∗
B state.

The key point we want to make here in this paper is that due to the

developmental changes, the system can have a preferential state to go to or

direction of the flow for development by comparing the mean first passage

transition times of forward and backward directions. This conclusion is based

on the first passage time calculations, which by themselves are independent

of whether the system is in equilibrium or non-equilibrium state because the

forces that appeared in the corresponding first passage time equations do not

have to be a gradient of a potential (details in the texts).

The first passage time has been addressed in [7, 8, 9, 10, 11] with minimum

action, flux and other methods. Here we use two methods mentioned above

which are different from those of the above-mentioned authors to calculate

the mean first passage times. One is directly solving the partial differential

equation that the first passage time satisfied with the appropriate boundary

conditions. The other is through the Brownian dynamics simulations to check

the results. Both methods agree with each other. The motivation here is that

it is more likely that the developmental process is influenced more by the

external fluctuations and hence, Fokker-Planck type of diffusion equations

is suitable for the description (the number of the molecules are typically

large so intrinsic fluctuations are relatively small). So our mean first passage

transition time calculations are based on the fact that evolution of probability

distribution obeys diffusion equation. Normally it is difficult to solve the N

dimensional partial differential equations for mean first passage time this

way. However, here we only consider two dimensions. So we can numerically

exactly solve the corresponding partial differential equations for the mean
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first passage time and compare with the Brownian dynamics simulations

results.

For equilibrium dynamics, the transition rate theory holds which relates

the barrier height with the transition first passage time. For non-equilibrium

systems, the effect of the extra curl flux force is to deviate the kinetic paths

from the gradient one. So the larger the curl flux force, the more deviations

we expect from the transition state theory. We compared the two forces (the

gradient and curl) in the relevant range of parameters we explore here. We

found the gradient force is often larger than or perpendicular to the curl force

in many regions of the state space. This means that in this parameter regime,

the kinetic rate measured by the first passage time will be less influenced by

the presence of the curl under those conditions. When we increase further

the fluctuations so that it becomes large (- for this system we found that the

critical value of D is 0.1 below which first passage time is correlated with the

barrier height and above which there are less correlations.) , the landscape

becomes flatter and the gradient force no longer dominates the curl. Then

the first passage time is no longer controlled by the barrier height alone. It

will be controlled by the total force with both gradient and curl.

5 Discussions

We want to discuss about landscape asymmetry towards unidirectional fea-

ture of the differentiation from multipotent state to differentiated state. It

is correct that the specific direction of differentiation (which one of the (in

this case) two available terminal attractor states will become occupied) ob-

viously simply depends on the nature of the parameter change during fate

commitment. This asymmetry induces change during differentiation depend

on complex changes of environmental conditions leading to the changes of the

landscape. This would correspond to ”instructive” regulation, as opposed to

stochastic regulation and is an old debate in stem cell biology. This refers
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to the question of which one of the two available differentiated states the ”ar-

row of time” points. However, here we do not address this problem explicitly.

We only show that the directionality from the stem cell state attractors (cen-

tral attractor) to either of the two marginal state is guaranteed because near

the bifurcation that destabilizes the stem cell attractor, the ”potential” of

marginal (differentiated state) attractors are necessarily lower - as shown in

the rest of the manuscript. Thus the discussion of the asymmetry in Fig.3 of

main text is an example for how asymmetry in the landscape can be intro-

duced to explain instructive regulation. The discussion was intended to show

that the landscape picture here might provide a metaphor for understanding

the process in a global way.

We wish to point out the advantages of the quantitative characterizations

of the landscape for future stem cell research: (1). By characterization of

the landscape topography of the stem cell, we can quantify the depth of

the basins and barrier heights, which is crucial for marking the global state

and stage in the development of stem cell. (2). We can also utilize the

information on landscape topography to find out in which environmental

and genetic condition would the stem cell undergo normal differentiation.

(3). We can also utilize the information on landscape topography to find out

in which environmental and genetic condition would the stem cell undergo

reverse differentiation crucial for stem cell engineering. (4). We can use

the quantification of the landscape to uncover the link between landscape

topography and stability, suggest for design principle for stem cell engineering

for function and robustness.

In concluding, what is new in this work are specific lessons learned from

such analysis of global dynamics of particular circuits. It adds an additional

dimension (potential) in the study of the properties of a system that is not

acknowledged in the myriads of computational modeling studies of genetic

circuits that are based on standard dynamical systems theory. These studies

only present new ”variations to a theme” by analyzing a specific (observed)
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system structure but using standard tools.

In contrast, in this work, we apply a relatively novel idea of quasi-potential

landscape to a particular circuit that drives cell fate decision. We show that

by considering the global dynamics, epitomized by the potential landscape, a

change in a control parameter is not only important with respect to bifurca-

tions (existence of stable states) but has additional qualitative consequences:

In our case it reveals that the directionality with which the bifurcation is

traversed is relevant. The application of this robust phenomenon to stem

cell differentiation explains the one-wayness of this process and thus, has

biological implications not achieved by standard dynamical system analysis.

Finally, we also would like to stress the importance of our specific analysis in

that our 2-gene circuitry on which we apply the potential landscape approach

has since the submission of our manuscript been popularized among stem cell

biologists [12, 13]. However, these discussions do not provide a formal and

quantitative explanations of the landscape.

6 Illustrations of existing models for direc-

tionality of differentiation
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Figure 1: Existing models for directionality of differentiation. A. Signaling
cascades acting akin to a ”domino effect” sequentially activate or repress
the sets of genes. B. Bifurcation diagram for a system that exhibits a se-
quential series of pitch-fork bifurcations as one control parameter (horizontal
axis) changes in one direction. The solid lines (”branches”) denote stable
steady state values of the state variable x1 (vertical axis). C. Hysteresis loop
consisting of two stable branches (solid lines) representing the stable steady
state values of the variable x1. As the control parameter is altered the cir-
cuit ”jumps” at critical parameter values along the dashed lines to the other
branch. Note that jumping up and down between the two branches happens
at different parameter values (see arrows) creating a hysteresis loop. D. Case
of hysteresis in which due to alteration of system parameters (relative to the
case in C.) other than that represented by the horizontal axis, the critical
point for return to the lower branch disappears from the physically accessible
state space.
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