A One-Pot, 3-Component, Domino Heck-aza-Michael

Approach to Libraries of Functionalized 1,1-Dioxido-

1,2-benzisothiazoline-3-acetic acids

Alan Rolfe, Kyle Young, Kelly Volp, Frank Schoenen, Benjamin Neuenswander,

Gerald H. Lushington and Paul R. Hanson *

^aDepartment of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582 ^bThe Center for Chemical Methodologies and Library Development at the University of Kansas (KU-CMLD), 2121 Simons Drive, Structural Biology Center, West Campus, Lawrence, KS 66047, USA phanson@ku.edu

Table of contents

General Experimental Methods	S2
Experimental data for compounds 11, 14, 21 and 24	S 3
Experimental data for compounds 28, 30 and 31	S4
Experimental data for compounds 34, 44 and 47	S5
Experimental data for compounds 53, 61 and 63	S 6
Experimental data for compounds 66, 68, 71 and 89	S7
Experimental data for compounds 90 and 91	S8
Experimental data for compounds 92	S9
Table of Mass Spectroscopy Data for all Library Compounds	S10-12
¹ H NMR and ¹³ C NMR spectra	S12-31
Mass Directed Fractionation LC-Mz Spectra for Compounds	S32-44
6, 12, 14, 24, 61, 62, 68, 85, 86, 89, 92 and 93.	
Lipinski and ADME Data	S44-46
References	S46-47

Experimental Section

General procedures: All air and moisture sensitive reactions were carried out in flame- or ovendried glassware under argon atmosphere using standard gas tight syringes, cannula, and septa. Stirring was achieved with oven-dried, magnetic stir bars. CH_3CN was purified by passage through the Solv-Tek purification system employing activated Al₂O₃ (Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520). Et₃N was purified by passage over basic alumina and stored over KOH. Flash column chromatography was performed with SiO₂ from Sorbent Technology (30930M-25, Silica Gel 60A, 40-63 um). Thin layer chromatography was performed on silica gel 60F254 plates (EM-5717, Merck). Deuterated solvents were purchased from Cambridge Isotope ¹H and ¹³C NMR spectra were recorded on a Bruker DRX-400 NMR spectrometer laboratories. operating at 400 MHz and 100 MHz respectively; or a Bruker Avance operating at 500 MHz and 125 MHz respectively. High-resolution mass spectrometry (HRMS) and FAB spectra were obtained in one of two manners: (i) on a VG Instrument ZAB double-focusing mass spectrometer and (ii) on a LCT Premier Spectrometer (Micromass UK Limited) operating on ESI (MeOH). All library syntheses using block technology were performed using a 24-position Mettler-Toledo Bohdan MiniBlock XT under an argon atmosphere in oven-dried Autochem 17 x 100 mm round bottom tubes. Parallel evaporations were performed using a GeneVac EZ-2 plus evaporator. Automated preparative reverse-phase HPLC purification was performed using a Waters 2767 Mass-Directed Fractionation system (2767 sample manager, 2525 Binary Pump, 515 Make-up pump) with a Waters ZQ quadrapole spectrometer and detected by UV (270 nm, Waters Xterra MS C-18 column, 19x150 mm, elution with the appropriate gradient of CH₃CN in pH 9.8 buffered aqueous ammonium formate at 18 mL min⁻¹ flow rate). Purity was determined by reverse-phase HPLC with peak area (UV) at 214 nm using a Waters Alliance 2795 system (Waters Xterra MS C-18 column, 4.6x150 mm, elution with a linear gradient of 5% CH₃CN in pH 9.8 buffered aqueous ammonium formate to 100% CH₃CN at 1.0 mL/min flow rate).

2-(2-(4-Methoxybenzyl)-3-isothiazolin-1-yl)acetic acid 1,1'-dioxide (11): Prepared using general procedure **A**. FTIR (neat) 1738, 1610, 1514, 1288, 1172 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.84 – 7.80 (m, 1H), 7.61 – 7.51 (m, 2H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.34 (t, *J* = 5.8 Hz, 2H), 6.87 – 6.80 (m, 2H), 4.80 – 4.74 (m, 1H), 4.58 (d, *J* = 15.3 Hz, 1H), 4.42 (d, *J* = 15.3 Hz, 1H), 3.77 (s, 3H), 2.92 (dd, *J* = 16.5, 5.0 Hz, 1H), 2.72 (dd, *J* = 16.5, 7.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 159.4, 137.2, 134.6, 130.0, 129.5, 126.8, 124.2, 121.3, 114.1, 56.4, 55.2, 46.0, 38.7; HRMS calculated for C₁₇H₁₈NO₅S (M+H)⁺ 348.0906; found 348.0915 (TOF MS EI+).

3-(2-Oxopropyl)-2-phenylthiazolin-1-one 1,1'-dioxide (14): Prepared using general procedure **A**. FTIR (neat) 1714, 1496, 1301, 1170 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 7.3 Hz, 1H), 7.66 – 7.57 (m, 2H), 7.50 – 7.44 (m, 5H), 7.31 (dt, *J* = 12.0, 4.2 Hz, 1H), 5.72 (dd, *J* = 8.7, 3.4 Hz, 1H), 3.10 (dd, *J* = 18.2, 3.4 Hz, 1H), 2.94 (dd, *J* = 18.2, 8.7 Hz, 1H), 2.12 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 206.0, 137.0, 134.4, 133.2, 129.9, 129.6, 126.9, 124.5, 124.4, 121.4, 56.8, 47.4, 30.7; HRMS calculated for C₁₆H₁₆NO₃S (M+H)⁺ 302.0851; found 302.0865 (TOF MS EI+).

Methyl 2-(2-benzyl-6-fluoro-3-isothiazolin-1-yl)acetate 1,1'-dioxide (21): Prepared using general procedure **A**. FTIR (neat) 1735, 1436, 1296, 1170 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.5, 4.7 Hz, 1H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.38 – 7.30 (m, 4H), 7.08 (d, *J* = 8.3 Hz, 1H), 4.83 – 4.74 (m, 1H), 4.59 (d, *J* = 15.6 Hz, 1H), 4.49 (d, *J* = 15.6 Hz, 1H), .3.62 (s, 3H), 2.87 (dd, *J* = 16.5, 5.0 Hz 1H), 2.69 (dd, *J* = 16.5, 7.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 166.2, 164.3, 140.4, 134.9, 130.8, 128.8, 127.7, 128.4, 128.2, 123.7, 117.5, 111.7, 56.5, 52.1, 46.7, 38.5; HRMS calculated for C₁₇H₁₇FNO₄S (M+H)⁺ 350.0862; found 350.0870 (TOF MS EI+).

Ethyl 2-(2-cyclopentyl-6-fluoro-3-isothiazolin-1-yl)acetate 1,1'-dioxide (24): Prepared using general procedure **A**. FTIR (neat) 1730, 1595, 1475, 1299, 1171 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (dd, J = 8.5, 4.8 Hz, 1H), 7.21 (td, J = 8.5, 2.2 Hz, 1H), 7.14 (dd, J = 8.4, 2.2 Hz 1H), 4.94 (dd, J = 9.0, 3.7 Hz 1H), 4.23 – 4.12 (m, 2H), 3.91 – 3.79 (m, 1H), 3.07 (dd, J = 16.5, 3.8 Hz, 1H), 2.75 (dd, J = 16.5, 3.8 Hz, 1H), 3.07 (dd, J = 16.5, 3.8 Hz, 1H), 2.75 (dd, J = 16.5, 3.8 Hz, 1H), 3.07 (dd, J = 16.5, 3.8 Hz, 3.8 Hz,

16.5, 9.1 Hz, 1H), 2.06 (ddd, J = 11.1, 7.2, 3.1 Hz, 2H), 1.94 – 1.71 (m, 4H), 1.67 – 1.55 (m, 3H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.3, 166.1, 141.2, 131.7, 123.4, 117.4, 117.2, 111.8, 111.60, 61.2, 57.3, 56.3, 39.6, 30.8, 29.1, 23.3, 22.6, 14.0; HRMS calculated for C₁₆H₂₂FNO₄S (M+H)⁺ 342.1175; found 342.1182 (TOF MS EI+).

Ethyl 2-(6-fluoro-2-(4-methoxybenzyl)-3-isothiazolin-1-yl)acetate 1,1'-dioxide (28): Prepared using general procedure **A**. FTIR (neat) 1730, 1514, 1298, 1171 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 8.6, 4.8 Hz, 1H), 7.34 (d, J = 8.7 Hz, 2H), 7.23 (dt, J = 8.5, 2.2 Hz, 1H), 7.08 (dd, J = 8.4, 2.2 Hz 1H), 6.91 – 6.84 (m, 2H), 4.75 (dd, J = 7.2, 4.8 Hz, 1H), 4.57 (d, J = 15.3 Hz, 1H), 4.39 (d, J =15.3 Hz, 1H), 4.16 – 4.01 (m, 2H), 3.80 (s, 3H), 2.87 (dd, J = 16.4, 4.8 Hz, 1H), 2.68 (dd, J = 16.4, 7.3 Hz, 1H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.8, 166.2, 164.1, 159.4, 140.5, 130.9, 129.9, 126.6, 123.6, 117.4, 114.1, 111.7, 61.2, 56.1, 55.2, 46.0, 38.6, 13.9; HRMS calculated for C₁₉H₂₁FNO₅S (M+H)⁺ 394.1124; found 394.1134 (TOF MS EI+).

Ethyl 2-(6-fluoro-2-octyl-3-isothiazolin-1-yl)acetate 1,1'-dioxide (30): Prepared using general procedure **A**. FTIR (neat) 1733, 1593, 1299, 1172 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (dd, *J* = 8.5, 4.5 Hz 1H), 7.24 (m, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 4.93 – 4.82 (m, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.30 (t, *J* = 7.6 Hz, 2H), 2.98 (dd, *J* = 16.5, 5.0 Hz, 1H), 2.75 (dd, *J* = 16.5, 7.3 Hz, 1H), 1.72 (d, *J* = 7.0 Hz, 2H), 1.28 (m, 13H), 0.87 (t, *J* = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 166.4, 162.4, 140.6, 131.0, 117.5, 117.3, 111.7, 61.4, 57.1, 43.6, 38.9, 31.7, 29.1, 28.0, 26.8, 22.6, 14.0; HRMS calculated for C₁₉H₂₉FNO₄S (M+H)⁺ 386.1801; found 386.1811 (TOF MS EI+).

2-(2-Cyclopentyl-6-fluoro-3-isothiazolin-1-yl)acetic acid 1,1'-dioxide (31): Prepared using general procedure **A**. FTIR (neat) 1731, 1593, 1294, 1170 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (dd, *J* = 8.5, 4.8 Hz, 1H), 7.23 (td, *J* = 8.5, 2.2 Hz, 1H), 7.18 (dd, *J* = 8.3, 2.2 Hz, 1H), 4.94 (dd, *J* = 9.0, 3.5 Hz, 1H), 3.93 – 3.80 (m, 1H), 3.16 (dd, *J* = 16.8, 3.6 Hz 1H), 2.83 (dd, *J* = 16.8, 9.0 Hz, 1H), 2.15 – 2.01 (m, 2H), 1.91 – 1.74 (m, 5H), 1.63 (dd, *J* = 6.7, 4.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₂) δ 174.9, 166.2,

164.2, 141.0, 131.7, 123.6, 117.6, 117.4, 111.8, 111.6, 57.5, 56.0, 39.3, 30.8, 29.1, 23.3, 22.7; HRMS calculated for $C_{14}H_{17}FNO_4S$ (M+H)⁺ 314.0862; found 314.0872 (TOF MS EI+).

2-(6-Fluoro-2-(4-methoxybenzyl)-3-isothiazolin-1-yl)acetic acid 1,1'-dioxide (34): Prepared using general procedure **A**. FTIR (neat) 1718, 1612, 1514, 1292, 1174 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 8.5, 4.6 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.27 – 7.21 (m, 1H), 7.10 (d, J = 8.2 Hz, 1H), 6.86 (d, J = 8.2 Hz, 2H), 4.76 – 4.70 (m, 1H), 4.57 (d, J = 15.3 Hz, 1H), 4.40 (d, J = 15.2 Hz, 1H), 3.78 (s, 3H), 3.54 (s, 1H), 2.93 (dd, J = 16.7, 4.6 Hz, 1H), 2.72 (dd, J = 16.7, 7.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 174.46 , 165.2, 159.52, 140.3, 130.8, 130.0, 126.4, 123.8, 117.6, 117.4, 114.2, 111.8, 111.6, 55.9, 55.2, 46.2, 38.3; HRMS calculated for C₁₇H₁₇FNO₅S (M+H)⁺ 366.0811; found 366.0819 (TOF MS EI+).

Ethyl 2-(2-isopropyl-3-oxo-5-(trifluoromethyl) isothiazolin-1-yl)ethanoate 1,1'-dioxide (44): Prepared using general procedure **A**. FTIR (neat) 1731, 1328, 1161 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 1H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 5.08 (dd, *J* = 8.1, 4.4 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.06 (dt, *J* = 13.6, 6.8 Hz, 1H), 3.05 (dd, *J* = 16.6, 4.4 Hz, 1H), 2.83 (dd, *J* = 16.6, 8.1 Hz, 1H), 1.40 (d, *J* = 6.8 Hz, 3H), 1.35 (d, *J* = 6.8 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 137.7, 127.6, 123.2, 116.6 (d, *J*_{C-F} = 3.9 Hz), 59.3, 52.5, 46.9, 38.9, 19.6, 17.5, 12.0; HRMS calculated for C₁₅H₁₉F₃NO₄S (M+H)⁺ 366.0987; found 366.0987 (TOF MS EI+).

Ethyl 2-(2-(4-methoxyphenyl)-5-(trifluoromethyl)isothiazolin-1-yl)ethanoate 1,1'-dioxide (47): Prepared using general procedure **A**. FTIR (neat) 1733, 1602, 1326, 1166 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 8.2 Hz, 1H), 7.09 – 7.05 (m, 1H), 7.03 (t, *J* = 2.2 Hz, 1H), 6.93 – 6.89 (m, 1H), 5.59 (dd, *J* = 8.1, 4.0 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 3.01 (dd, *J* = 16.6, 4.1 Hz, 1H), 2.81 (d, *J* = 8.2, 4.1 H, 1H), 1.18 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.8, 158.7, 133.6, 132.6, 128.4 (d, *J*_{C-F} = 2.6 Hz), 128.0, 123.3, 117.2, 111.5, 109.4, 59.4, 56.2, 53.4, 36.3, 11.9; HRMS calculated for C₁₉H₁₈F₃NO₅SNa (M+Na)⁺ **2-(2-Cyclohexyl-3-oxo-6-(trifluoromethyl)isothiazolin-1-yl)acetic acid 1,1'-dioxide (53):** Prepared using general procedure **A**. FTIR (neat) 2935, 1712, 1610, 1512, 1299 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.1 Hz, 1H), 7.85 – 7.74 (m, 2H), 5.11 (dd, *J* = 8.1, 4.1 Hz, 1H), 3.64 (tt, *J* = 12.0, 3.5 Hz, 1H), 3.14 (dd, *J* = 16.9, 4.2 Hz, 1H), 2.92 (dd, *J* = 16.9, 8.2 Hz, 1H), 2.04 (d, J = 12.3 Hz, 1H), 1.93 (d, *J* = 12.1 Hz, 1H), 1.85 (t, *J* = 14.6 Hz, 2H), 1.72 – 1.56 (m, 4H), 1.41 – 1.28 (m, 2H), 1.16 (ddd, *J* = 16.7, 13.1, 9.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 139.7, 139.2, 134.74 (q, *J*_{C-F} = 33.1 Hz), 126.8, 121.8, 56.9, 54.2, 40.5, 32.0, 29.9, 25.9, 25.7, 25.2; HRMS calculated for C₁₆H₂₂F₃N₂O₄S (M+NH₄)⁺ 395.1252; found 395.1270 (TOF MS EI+).

Ethyl 2-(3-oxo-2-(3-(trifluoromethyl)benzyl)isothiazolin-1-yl)acetate 1,1'-dioxide (61): Prepared using general procedure **B**. FTIR (neat) 1731, 1328, 1298, 1172 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.1 Hz, 1H), 7.68 (d, *J* = 1.3 Hz, 2H), 7.62 (dq, *J* = 7.5, 1.3 Hz, 1H), 7.58 (dd, *J* = 11.9, 4.4 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.41 – 7.37 (m, 1H), 4.87 (t, *J* = 5.9 Hz, 1H), 4.68 – 4.59 (s, 2H), 4.10 – 3.96 (m, 2H), 2.85 (dd, *J* = 16.5, 6.1 Hz, 1H), 2.75 (dd, *J* = 16.5, 5.8 Hz, 1H), 1.14 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.0, 137.0, 136.9, 134.4, 133.1, 131.7, 129.6, 129.3, 124.9 (q, *J*_{C-F} = 3.8), 124.1, 121.4, 61.2, 57.7, 46.7, 39.5, 13.8; HRMS calculated for C₁₉H₁₉F₃NO₄S (M+H)⁺ 414.0987; found 414.1001 (TOF MS EI+).

Methyl 2-(2-(4-(dimethylamino)phenyl)-6-fluoro-3-isothiazolin-1-yl)acetate 1,1'-dioxide (63): Prepared using general procedure **B**. FTIR (neat) 1737, 1608, 1519, 1299, 1172 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.6, 4.8 Hz, 1H), 7.35 – 7.31 (m, 2H), 7.31 – 7.27 (m, 1H), 7.21 (dd, J = 8.5, 2.1 Hz, 1H), 6.77 – 6.72 (m, 2H), 5.29 (dd, J = 7.9, 4.5 Hz, 1H), 3.61 (s, 3H), 2.99 (s, 6H), 2.94 (dd, J = 16.5, 4.5 Hz, 1H), 2.75 (dd, J =16.5, 8.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 166.2, 164.1, 150.7, 139.8, 130.1, 124.0, 120.4, 117.6, 117.4, 112.8, 111.7, 111.5, 59.2, 40.4, 38.3; HRMS calculated for C₁₈H₂₀FN₂O₄S (M+H)⁺ 379.1128; found 379.1143 (TOF MS EI+). **Methyl 2-(6-fluoro-2-(2-methoxybenzyl)-3-isothiazolin-1-yl)acetate 1,1'-dioxide (66):** Prepared using general procedure **B**. FTIR (neat) 1733, 1519, 1292, 1244 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, J = 8.6, 4.8 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.33 – 7.27 (m, 1H), 7.23 (td, J = 8.5, 2.2 Hz, 1H), 7.11 (dd, J = 8.5, 2.1 Hz, 1H), 6.96 (t, J = 7.1 Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 4.83 (dd, J = 8.6, 3.7 Hz, 1H), 4.63 (d, J = 15.6 Hz, 1H), 4.50 (d, J = 15.6 Hz, 1H), 3.85 (s, 3H), 3.66 (s, 3H), 3.09 (dd, J = 16.6, 3.8 Hz, 1H), 2.70 (dd, J = 16.6, 8.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 170.7, 166.1, 164.1, 157.4, 140.8, 130.8, 129.5, 123.6, 123.5, 123.1, 121.0, 117.4, 117.2, 111.9, 111.7, 110.3, 56.7, 55.3, 52.0, 40.5, 38.1; HRMS calculated for C₁₈H₁₉FNO₅S (M+H)⁺ 380.0968; found 380.0980 (TOF MS EI+).

Ethyl 2-(6-fluoro-3-oxo-2-(3,4,5-trimethoxybenzyl)isothiazolin-1-yl)acetate 1,1'-dioxide (68): Prepared using general procedure **B**. FTIR (neat) 1731, 1593, 1463, 1298, 1126 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 8.6, 4.7 Hz, 1H), 7.25 (dt, J = 8.5, 2.5 Hz, 1H), 7.09 (d, J = 8.3 Hz, 1H), 6.65 (s, 2H), 4.81 (t, J = 5.8 Hz, 1H), 4.48 (q, J = 15.6 Hz, 2H), 4.13 – 3.99 (m, 2H), 3.82 (s, 9H), 2.87 (dd, J = 16.5, 5.0 Hz 1H), 2.70 (dd, J = 16.5, 6.9 Hz, 1H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.8, 166.2, 164.2, 153.4, 140.5, 137.5, 130.7, 123.6, 117.5, 117.4, 111.7, 111.5, 105.3, 61.2, 60.8, 56.8, 56.1, 47.3, 38.9, 13.9; HRMS calculated for C₂₁H₂₅FNO₇S (M+H)⁺ 454.1336; found 454.1353 (TOF MS EI+).

2-(4-(Dimethylamino)phenyl)-3-(2-oxopropyl)-5-(trifluoromethyl)isothiazolin-1-one 1,1'-dioxide (71): Prepared using general procedure **B**. FTIR (neat) 1714, 1606, 1519, 1309, 1168 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.75 (s, 1H), 7.35 – 7.28 (m, 2H), 6.79 – 6.69 (m, 2H), 5.47 (dd, *J* = 8.5, 3.7 Hz, 1H), 3.13 (dd, *J* = 18.3, 3.7 Hz, 1H), 3.00 (s, 6H), 2.91 (dd, *J* = 18.3, 8.5 Hz, 1H), 2.13 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 205.7, 150.7, 138.6, 138.1, 129.7, 122.3, 122.1 (d, *J*_{C-F} = 3.9), 120.2, 112.9, 58.6, 47.1, 40.4, 30.5; HRMS calculated for C₁₉H₂₀F₃N₂O₃S (M+H)⁺ 413.1146; found 413.1144 (TOF MS EI+).

Prepared using general procedure C. FTIR (neat) 2927, 2854, 1714, 1641, 1299, 1157 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.73 – 7.65 (m, 2H), 7.45 (d, *J* = 8.1 Hz, 1H), 6.51 (d, *J* = 16.0 Hz, 1H), 4.96 – 4.89 (m, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.24 – 4.13 (m, 2H), 3.32 (t, *J* = 7.6 Hz, 2H), 2.98 (dd, *J* = 16.4, 5.3 Hz, 1H), 2.77 (dd, *J* = 16.4, 7.0 Hz, 1H), 1.73 (dd, *J* = 13.9, 6.8 Hz, 2H), 1.41 – 1.18 (m, 16H), 0.87 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 166.2, 141.7, 138.8, 136.3, 136.0, 132.3, 124.8, 121.1, 120.1, 61.3, 60.9, 57.4, 43.6, 39.0, 31.7, 27.8, 28.1, 26.8, 22.6, 14.2, 14.0; HRMS calculated for C₂₄H₃₆NO₆S (M+H)⁺ 466.2263; found 466.2279 (TOF MS EI+).

(*E*)-3-(1-(Carboxymethyl)-2-octyl-3-isothiazolin-5-yl)acrylic acid 1,1' dioxide (90): Prepared using general procedure C. FTIR (neat) 2852, 1689, 1288, 1159 cm⁻¹; ¹H NMR (500 MHz, MeOD) δ 8.03 (s, 1H), 7.94 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.75 (d, *J* = 16.0 Hz, 1H), 7.65 (d, *J* = 8.1 Hz, 1H), 6.65 (d, *J* = 16.0 Hz, 1H), 4.97 (t, *J* = 5.9 Hz, 1H), 3.36 (dd, *J* = 14.4, 8.2 Hz, 2H), 2.98 (dd, *J* = 16.4, 5.8 Hz, 1H), 2.85 (dd, *J* = 16.4, 6.0 Hz, 1H), 1.74 (d, *J* = 5.7 Hz, 2H), 1.44 – 1.24 (m, 12H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, MeOD) δ 172.1, 168.2, 142.1, 139.4, 136.4, 135.7, 132.2, 125.0, 120.9, 119.8, 58.1, 43.5, 38.4, 31.5, 28.9, 27.9, 26.5, 22.3, 13.0; HRMS calculated for C₂₀H₂₈NO₆S (M+H)⁺ 410.1637; found 410.1669 (TOF MS EI+).

(*E*)-2-Octyl-6-(3-oxobut-1-enyl)-3-(2-oxopropyl)isothiazolin-1-one 1,1' dioxide (91): Prepared using general procedure C. FTIR (neat) 2925, 2854, 1716, 1672, 1294, 1157 cm⁻¹; 1H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 1.2 Hz, 1H), 7.70 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.51 (d, *J* = 16.2 Hz, 1H), 7.42 (d, *J* = 8.1 Hz, 1H), 6.78 (d, *J* = 16.2 Hz, 1H), 5.04 (dd, *J* = 7.2, 5.2 Hz, 1H), 3.34 – 3.19 (m, 2H), 3.16 (dd, *J* = 18.1, 5.2 Hz, 1H), 2.88 (dd, *J* = 18.1, 7.3 Hz, 1H), 2.40 (s, 3H), 2.23 (s, 3H), 1.75 – 1.59 (m, 2H), 1.41 – 1.17 (m, 10H), 0.87 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 205.7, 197.5, 140.1, 136.2, 132.4, 129.0, 125.2, 120.3, 56.3, 47.9, 44.1, 31.7, 30.8, 29.1, 28.1, 28.0, 26.8, 22.6, 14.0; HRMS calculated for C₂₂H₃₃NO₄S (M+H)⁺ 406.2052; found 406.2072 (TOF MS EI+).

(*E*)-Methyl 3-(1-(2-methoxy-2-oxoethyl)-2-(2-methoxyphenyl)-3-oxoisoindolin-5-yl)acrylate 1,1' dioxide (92): Prepared using general procedure C. FTIR (neat) 1720, 1600, 1490, 1305, 1207 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 1.2 Hz, 1H), 7.77 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.73 (d, *J* = 16.0 Hz, 1H), 7.56 (d, *J* = 8.1 Hz, 1H), 7.37 (t, *J* = 8.2 Hz, 1H), 7.06 (ddd, *J* = 8.0, 2.1, 0.8 Hz 1H), 7.03 (t, *J* = 2.2 Hz, 1H), 6.88 (ddd, *J* = 8.4, 2.5, 0.8 Hz, 1H), 6.55 (d, *J* = 16.0 Hz, 1H), 5.57 (dd, *J* = 8.2, 4.1 Hz, 1H), 3.84 (d, *J* = 1.8 Hz, 6H), 3.64 (s, 3H), 3.00 (dd, *J* = 16.4, 4.2 Hz, 1H), 2.78 (dd, *J* = 16.4, 8.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 166.6, 160.7, 141.8, 137.5, 136.5, 135.5, 135.0, 132.7, 130.6, 124.9, 120.9, 120.4, 117.3, 113.2, 111.0, 58.1, 55.4, 52.1, 52.0, 38.3; HRMS calculated for C₂₁H₂₂NO₇S (M+H)⁺ 432.1117; found 432.1127 (TOF MS EI+).

Compound No.	Calc. Mass	Mass Found	Compound No.	Calc. Mass	Mass Found	
1	284.0957	284.0963	26	350.0862	350.0887	
2	348.0906	348.0915	27	380.0968	380.0990	
3	362.1062	362.1080	28	394.1124	394.1134	
4	332.0957	332.0978	29	364.1019	364.1033	
5	362.1062	362.1088	30	386.1723	386.1811	
6	376.1219	376.1225	31	314.0862	314.0872	
7	296.0957	296.0976	32	328.1019	328.1036	
8	310.1113	310.1138	33 ²	339.0815	339.0833	
9	304.0644	304.0666	34	366.0811	366.0819	
10	334.0749	334.0761	35	336.0706	336.0716	
11	348.0906	348.0915	36	358.1488	358.1513	
12	294.1164	294.1181	37 ²	369.1069	369.1104	
13	308.1320	308.1335	38 ²	383.1257	383.1259	
14	302.0851	302.0865	39	378.0987	378.1011	
15	332.0957	332.0974	40	392.1143	392.1152	
16	302.0862	302.0876	41 ²	447.1202	447.1183	
17 ²	333.1284	333.1293	42	400.0830	400.0863	
18	336.0706	336.0741	43 ²	439.1887	439.1884	
19	380.0968	380.0977	44 ²	383.1252	383.1260	
20	350.0862	350.0870	45 ³	805.2028	805.2031	
21	371.1567	371.1574	46 ²	423.1565	423.1585	
22 ²	333.1284	333.1116	47 ²	447.1202	447.1220	
23 ²	347.1441	347.1458	48 ²	461.1358	461.1370	
24	342.1175	342.1182	49	414.0987	414.1272	
25	356.1332	356.1349	50	435.1691	435.2048	

Compound No.	Calc. Mass	alc. Mass Mass Found		Calc. Mass	Mass Found			
51 ²	369.1096	369.1113	74	414.0987	414.1002			
52 ²	381.1096	381.1100	75	478.2239	478.2253			
53 ²	395.1252	395.1270	76 ²	481.2348	481.2343			
54 ²	433.1045	433.1039	77	479.2555	479.2568			
55 ²	403.0939	403.0960	78	397.1034	397.1047			
56 ²	425.1722	425.1746	79	451.1503	451.1512			
57	361.1222	361.1239	80	435.1554	435.1565			
58	399.1742	399.1750	81	384.0717	384.0725			
59	348.0906	348.0919	82	446.2177	446.2186			
60	394.2416	394.2435	83	447.2493	447.2474			
61	414.0987	414.1001	84	446.1273	446.1269			
62	436.1430	436.1427	85	474.1586	474.1598			
63	379.1128	379.1143	86	418.0960	418.0975			
64	363.1179	363.1185	87	414.1375	414.1364			
65	419.1441	419.1463	88	432.1117	432.1118			
66	380.0968	380.0980	89	460.1430	460.1442			
67	366.0811	366.0820	90	404.0804	404.0812			
68	454.1336	454.1353	91	400.1219	400.1228			
69	429.1096	429.1103	92	438.1950	438.1964			
70	415.0939	415.0945	93	466.2263	466.2279			
71	413.1147	413.1158	94	410.1637	410.1669			
72	469.1409	469.1455	95	406.2052	406.2072			
73	430.0936	430.0950						

 1 (M + H)⁺ peak reported unless otherwise stated, 2 (M + NH₄)⁺ peak reported, 3 (2M + Na)⁺ peak reported

Sample Report (continued):

Sample 25 Vial 3:24 ID KY-1-151-1 File AR041307L24 Date 13-Apr-2007 Time 22:03:19 Description Crude

Mass 298.1132 298.1132

Sample Report (continued):

Sample 5 Vial 3:4 ID KV-1-25-4 File AR041307L04 Date 13-Apr-2007 Time 16:36:14 Description Crude

34

Sample 23 Vial 3:22 ID KY-1-148-4 File AR041307L22 Date 13-Apr-2007 Time 21:30:41 Description Crude

454.1353 454.1353 454.1353 454.1353 454.1353 454.1353

454.1353

Sample Report (continued):

Sample 66 Vial 4:10 ID PSL4-1-373-3 File AR080107L10 Date 02-Aug-2007 Time 09:25:03 Description MDF002882

41

Sample Report (continued):

Sample 68 Vial 4:12 ID PSL4-1-374-1 File AR080107L12 Date 02-Aug-2007 Time 07:50:24 Description MDF002856

42

Sample Report (continued):

Sample 69 Vial 4:13 ID PSL4-1-374-2 File AR080107L13 Date 02-Aug-2007 Time 07:59:48 Description MDF002860

Calculated Lipinski and ADME property table of all library members

Compound	ClogP	Mol.Wt [g/mol]	No. of Hydrogen Bond Acceptors	No. of Hydrogen Bong Donors	No. of Rotatable Bonds	Lipinski Violations	Diversity	Blood Brain Barrier Permeation	Aqueous Solubility [log(mol/L)]	CACO2 [10 ⁴ cm/s]	Solubility [log(mol/L)]	Permeability [10 ^{.6} cm/s}	Protien Binding	Volume Distribution [-logL/kg]	HERG Blockers	Solubility in DMSO	Metabolic Stability
1	41.00	2.32	4	0	4	1	0.67	0.74	-3.69	0.97	0.28	0.90	72.31	-0.28	0.64	1.19	0.27
2	41.00	2.79	6	0	5	1	3.42	0.61	-4.46	1.08	-0.11	1.00	90.14	-0.58	0.47	0.93	-0.29
3	42.00	3.04	5	0	6	2	3.42	0.01	-4.39	0.76	-0.15	0.81	86.17	-0.56	0.28	1.09	-0.10
4	41.00	3.37	5	0	5	1	3.42	0.50	-4.38	0.98	-0.06	0.96	89.68	-0.54	0.70	1.25	-0.10
5	41.00	3.39	6	0	6	2	3.42	0.42	-4.15	0.76	-0.07	0.89	90.76	-0.70	0.79	0.83	-0.12
6	42.00	3.57	5	0	7	2	3.42	0.24	-4.73	0.86	-0.30	0.86	87.91	-0.60	0.18	0.72	-0.30
1	41.00	2.40	4	0	4	1	3.42	0.49	-3.57	0.48	0.40	0.47	/1.16	-0.03	0.79	1.80	0.35
8	41.00	2.96	4	0	4	1	3.42	0.42	-3.54	0.42	0.34	0.48	66.08	-0.07	0.74	1.89	0.41
9	41.00	2.38	5	0	4	1	3.42	0.31	-3.63	0.69	0.22	0.73	80.56	-0.24	0.87	1.87	0.40
10	41.00	2.40	5	0	5	2	3.42	0.05	-4.04	0.51	0.09	0.52	80.57	-0.18	0.85	1.79	0.42
12	42.00	2.00	3	0	3	2	3.42	-0.32	-3.99	0.40	0.05	0.40	74.46	-0.40	0.31	1.71	-0.03
12	41.00	2.30	3	0	3	1	3.42	0.51	-4.02	0.90	0.22	0.00	79.50	-0.41	0.01	0.84	-0.03
14	41.00	2.54	4	0	3	1	3.42	0.00	-3.93	1.07	0.14	1.02	85.80	-0.39	0.66	1 24	0.16
15	41.00	2.04	5	0	4	1	3.42	0.39	-4 53	0.89	0.00	0.79	82.38	-0.37	0.00	1.24	-0.30
16	41.00	2.46	4	0	4	1	0.42	0.51	-3.80	0.69	0.38	0.76	72 78	-0.31	0.10	1.00	0.00
17	41.00	2.40	4	0	4	1	3.42	0.01	-3.88	0.67	0.33	0.74	75.30	-0.31	0.85	1.24	0.10
18	41.00	2.98	5	0	4	1	3.42	0.23	-4 36	0.70	0.00	0.80	86.53	-0.45	0.71	1 44	0.03
19	42.00	3.19	5	0	6	2	3.42	-0.31	-4.60	0.49	-0.08	0.69	91.10	-0.56	0.53	1.23	0.01
20	42.00	3.27	4	0	5	1	3.42	0.11	-4.38	0.58	0.07	0.78	90.55	-0.44	0.58	1.31	-0.08
21	41.00	5.33	4	0	10	2	3.42	-0.14	-5.28	0.56	-0.13	0.76	93.24	-0.41	0.44	1.34	-0.56
22	41.00	2.99	4	0	5	1	3.42	0.44	-4.02	0.72	0.29	0.74	74.19	-0.30	0.78	1.18	0.03
23	41.00	3.39	4	0	5	1	3.42	0.41	-3.96	0.66	0.24	0.78	76.24	-0.37	0.93	1.33	-0.03
24	41.00	3.53	4	0	5	1	3.42	0.33	-4.50	0.70	0.04	0.81	77.97	-0.45	0.86	1.31	-0.18
25	41.00	4.09	4	0	5	1	3.42	0.35	-4.54	0.60	0.06	0.71	79.23	-0.32	0.50	1.28	-0.17
26	41.00	3.51	5	0	5	1	3.42	0.23	-4.58	0.71	0.00	0.85	88.36	-0.52	0.68	1.38	-0.07
27	41.00	3.54	6	0	6	2	3.42	-0.07	-4.83	0.51	-0.11	0.60	89.90	-0.38	0.61	1.34	0.04
28	42.00	3.72	5	0	7	2	3.42	-0.38	-4.70	0.50	-0.19	0.70	89.18	-0.61	0.48	1.17	-0.13
29	42.00	3.80	4	0	6	2	3.42	0.04	-4.48	0.59	-0.04	0.78	87.91	-0.49	0.51	1.23	-0.23
30	41.00	5.85	4	0	11	2	3.42	-0.16	-5.50	0.57	-0.23	0.77	94.51	-0.46	0.36	1.27	-0.69
31	41.00	2.54	4	0	4	1	3.42	0.26	-3.71	0.09	0.46	0.20	73.70	0.00	0.97	1.90	0.43
32	41.00	3.10	4	0	4	1	3.42	0.20	-3.70	0.07	0.40	0.26	67.76	0.00	0.97	2.04	0.48
33	41.00	2.52	5	0	4	1	3.42	-0.02	-3.92	0.33	0.29	0.53	84.13	-0.29	0.97	1.94	0.40
34	42.00	2.72	5	0	6	2	3.42	-0.63	-4.22	0.07	0.12	0.30	84.80	-0.39	0.50	1.83	0.39
35	42.00	2.80	4	0	5	1	3.42	-0.30	-3.90	0.16	0.28	0.33	84.79	-0.30	0.56	1.90	0.38
36	41.00	4.86	4	0	10	2	3.42	-0.57	-4.87	0.15	0.03	0.36	86.23	-0.23	0.37	2.04	-0.14
37	41.00	3.20	4	0	5	1	3.42	0.37	-4.44	0.29	0.34	0.50	81.41	-0.40	0.75	1.06	-0.01
38	41.00	3.60	4	U C	5	1	3.42	0.38	-4.72	0.34	0.21	0.52	83.61	-0.37	0.60	1.12	-0.08
39	41.00	3.74	4	0	5	1	3.42	-0.12	-4.48	0.26	0.19	0.38	81.52	-0.08	0.30	1.97	0.05
40	41.00	4.30	4	0	5	1	3.42	-0.20	-5.06	0.34	0.13	0.48	89.94	-0.41	0.28	1.64	-0.23
41	42.00	3.93	5	0	/	2	3.42	-0.43	-5.01	0.17	-0.18	0.60	98.34	-0.68	0.55	1.26	0.02
42	42.00	4.01	4	0	6	2	3.42	-0.06	-4.65	0.24	0.00	0.68	96.56	-0.54	0.66	1.47	-0.01

43	41.00	6.07	4	0	11	2	3.42	-0.34	-5.69	0.20	-0.18	0.62	102.75	-0.50	0.49	1.59	-0.56
44	41.00	2.99	4	0	5	1	3.42	0.44	-4.02	0.72	0.29	0.74	74.19	-0.30	0.78	1.18	0.03
45	41.00	4.27	4	0	6	2	3.42	0.07	-4.88	0.41	0.09	0.54	85.32	-0.40	0.49	1.29	-0.23
46	41.00	4.83	4	0	6	2	3.42	-0.16	-5.30	0.37	0.04	0.49	89.49	-0.40	0.23	1.53	-0.37
47	41.00	4.28	6	0	7	2	3.42	0.14	-5.06	0.27	-0.18	0.58	97.90	-0.44	0.52	1.09	0.01
48	42.00	4.46	5	0	8	2	3.42	-0.47	-5.13	0.20	-0.29	0.61	96.55	-0.72	0.49	1.18	-0.13
49	42.00	4.54	4	0	7	2	3.42	-0.11	-4.76	0.26	-0.11	0.69	94.38	-0.59	0.60	1.39	-0.16
50	41.00	6.59	4	0	12	2	3.42	-0.37	-5.86	0.21	-0.28	0.61	102.56	-0.55	0.41	1.46	-0.72
51	41.00	3.14	4	0	5	1	3.42	0.03	-4.28	-0.17	0.44	0.00	72.08	-0.12	0.82	1.65	0.15
52	41.00	3.28	4	0	5	1	3.42	-0.03	-4.12	-0.10	0.30	0.10	74.41	-0.15	0.74	1.91	0.31
53	41.00	3.84	4	0	5	1	3.42	-0.11	-4.54	-0.08	0.31	-0.01	75.38	0.01	0.44	1.99	0.32
54	42.00	3.46	5	0	7	2	3.42	-0.77	-4.64	-0.21	0.02	0.19	92.32	-0.51	0.56	1.79	0.43
55	42.00	3.54	4	0	6	2	3.42	-0.48	-4.18	-0.15	0.21	0.25	91.82	-0.42	0.70	2.05	0.48
56	41.00	5.60	4	0	11	2	3.42	-0.89	-5.18	-0.19	0.00	0.20	96.58	-0.40	0.51	2.23	-0.11
57	41.00	3.01	6	1	5	1	3.42	0.69	-4.26	0.74	-0.07	0.86	82.85	-0.38	0.51	0.96	-0.23
58	41.00	3.82	3	1	6	2	3.42	-0.49	-6.10	0.27	-0.53	0.48	115.67	-0.56	0.16	1.33	-0.48
59	42.00	2.84	7	0	9	2	3.42	-0.90	-4.83	-0.33	-0.08	0.13	93.74	-0.60	0.78	1.68	0.20
60	51.00	7.83	4	0	15	2	3.42	-0.34	-6.30	0.76	-0.70	1.02	101.91	-0.68	-0.30	1.28	-0.97
61	42.00	4.54	4	0	7	2	3.42	0.05	-5.40	0.29	-0.16	0.45	100.78	-0.40	0.22	1.22	-0.55
62	42.00	2.95	7	0	9	2	3.42	-0.11	-4.94	0.61	-0.36	0.76	92.27	-0.86	0.56	0.65	-0.54
63	41.00	3.15	6	1	5	1	3.42	0.48	-4.49	0.38	0.02	0.66	82.92	-0.38	0.62	0.89	-0.27
64	41.00	2.85	5	1	4	1	3.42	0.20	-4.63	0.61	-0.06	0.67	84.73	-0.37	0.66	1.21	-0.06
65	41.00	0.64	4	1	6	2	3.42	-0.31	-5.09	0.07	-0.24	0.26	91.44	-0.13	0.33	1.87	0.08
66	42.00	4.15	4	0	6	2	3.42	-0.44	-5.21	-0.11	0.08	0.24	96.55	-0.43	0.53	1.51	-0.33
67	42.00	3.69	4	0	6	2	3.42	-0.70	-4.91	-0.45	0.26	-0.14	89.68	-0.28	0.35	2.03	0.16
68	42.00	3.10	7	0	9	2	3.42	-0.41	-5.06	0.38	-0.30	0.65	94.48	-0.86	0.88	0.71	-0.38
69	41.00	3.89	6	1	6	2	3.42	0.21	-4.95	0.27	-0.08	0.58	86.97	-0.43	0.64	1.31	-0.11
70	41.00	3.43	6	1	6	2	3.42	-0.36	-4.88	-0.01	-0.03	0.31	85.43	-0.47	0.95	1.81	0.25
71	41.00	3.59	5	1	5	1	3.42	0.03	-4.54	0.29	-0.09	0.49	85.15	-0.36	0.63	1.33	0.13
72	41.00	1.38	4	1	7	2	3.42	-0.76	-5.57	-0.17	-0.35	0.19	101.84	-0.24	0.31	2.55	0.11
73	42.00	3.93	5	0	7	2	3.42	-0.40	-5.26	0.12	-0.20	0.59	100.99	-0.59	0.67	1.63	-0.08
74	42.00	3.63	4	0	6	2	3.42	-0.10	-4.80	0.26	-0.09	0.66	96.28	-0.55	0.73	1.26	0.05
75	51.00	8.18	4	0	15	2	3.42	-0.62	-6.81	0.16	-0.57	0.66	118.58	-0.59	0.06	1.79	-0.96
76	51.00	7.72	4	0	15	2	3.42	-1.14	-6.16	-0.21	-0.40	0.33	109.95	-0.43	0.04	2.55	-0.62
77	51.00	7.88	3	0	14	2	3.42	-0.55	-6.44	0.19	-0.51	0.67	114.13	-0.53	0.17	1.69	-0.96
78	41.00	3.29	6	1	5	1	3.42	0.25	-4.70	0.12	0.03	0.54	84.52	-0.37	0.93	0.97	-0.18
79	41.00	3.52	4	1	6	2	3.42	-0.33	-5.60	0.09	-0.32	0.53	104.95	-0.41	0.48	1.46	-0.39
80	41.00	0.79	4	1	6	2	3.42	-0.67	-5.19	-0.34	-0.15	0.14	93.84	-0.22	0.76	2.01	-0.02
81	42.00	2.87	5	0	6	2	3.42	-0.76	-4.21	-0.22	0.17	0.17	83.89	-0.25	0.85	2.30	0.49
82	51.00	7.58	4	0	14	2	3.42	-0.82	-6.36	0.17	-0.42	0.61	111.46	-0.35	0.20	1.85	-0.81
83	51.00	7.28	3	0	13	2	3.42	-0.60	-6.07	0.23	-0.39	0.66	108.16	-0.29	0.32	1.66	-0.85
84	42.00	3.37	7	0	9	2	3.42	-0.49	-5.41	0.41	-0.40	0.54	101.31	-0.53	0.17	1.28	-0.66
85	42.00	4.42	7	0	11	2	3.42	-0.54	-5.80	0.49	-0.61	0.60	102.59	-0.55	-0.01	1.09	-0.89
86	42.00	2.68	7	0	9	2	0.75	-1.46	-4.36	-0.47	-0.05	-0.27	82.12	-0.41	0.49	2.28	0.10
87	42.00	2.75	5	0	7	2	3.42	-0.32	-5.76	0.69	-0.44	0.52	100.21	-0.24	0.11	1.05	-0.57
88	41.00	5.51	6	0	13	2	3.42	-0.47	-5.71	0.34	-0.47	0.68	97.38	-0.48	0.05	1.69	-0.84
89	41.00	6.56	6	0	15	2	3.42	-0.30	-6.51	0.48	-0.72	0.75	100.03	-0.58	-0.10	1.05	-1.19
90	41.00	4.82	6	0	13	2	0.75	-0.96	-5.37	-0.37	-0.24	-0.07	87.38	-0.26	0.40	2.20	-0.20
91	41.00	4.88	4	0	11	2	3.42	-0.44	-5.63	0.50	-0.50	0.71	95.34	-0.27	0.13	1.72	-0.73
92	41.00	3.12	8	0	8	2	3.42	0.05	-5.43	0.82	-0.47	0.79	99.53	-0.57	0.02	0.89	-0.55
93	41.00	4.18	8	0	10	2	3.42	0.01	-6.06	0.93	-0.65	0.91	106.99	-0.64	-0.09	0.91	-0.83
94	41.00	2.43	8	0	8	2	0.75	-1.03	-4.11	-0.09	0.01	0.05	78.30	-0.19	0.54	2.56	0.12
95	41.00	2.50	6	0	6	2	3.42	-0.49	-5.06	0.65	-0.24	0.67	84.80	-0.42	0.74	1.15	-0.57

Sketched electronic versions of the library compounds were imported into the Tripos Molecular Spreadsheet¹ where in standard Lipinski Rule of 5 parameters (molecular weight, ClogP, number of Hacceptors, and number of H-donors)² plus the number of rotatable bonds were computed. Lipinski violations were specified according to molecular weight > 500, ClogP > 5.0, number of acceptors > 10, number of donors > 5, and number of rotatable bonds > 5. The structures were then exported into SDF format and coverted into three-dimensional protonated structures via Concord.³ Absorption, distribution, metabolism and excretion (ADME) profiles of these compounds was then generated via Volsurf.⁴ Descriptors were generated using three probes (water, hydrophobic and carbonyl oxygen) with a grid space distribution of 1.0 Å. Predictions were then projected onto internal ADME models at the 5-component level. Finally diversity analysis was carried out using DiverseSolutions⁵ using standard H-aware 2D BCUT descriptors. The library was then projected onto a chemical space defined by the following descriptors: gastchrg burden 000.100 K H, haccept burden 001.000 K H, hdonor burden 000.600 K H, tabpolar burden 000.400 K H, tabpolar burden 000.500 K L and populated (for comparison) by a recent version of the PubChem library (ca. 11/2006; ~7,000,000 unique chemical structures). Diversity scores (div(A)) for our library were then generated for each of our compounds (A) according to the expression:

$$div(A) = \frac{pop[Cell(A)]}{\sum_{i \in Occ} pop(i) / N_{occ}}$$

where N_{occ} is the number of cells occupied by PubChem compounds in an evenly distributed $20 \times 20 \times 20 \times 20 \times 20$ grid decomposition of the chemistry space, and pop(i) is the population of cell *i*.

¹ SYBYL 8.0, The Tripos Associates, St. Louis MO, 2008.

² Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv. Drug Delivery Rev.* **1997, 23,** 3-25.

³ Concord 8.0, The Tripos Associates, St. Louis MO, 2008.

⁴ Cruciani, G., Meniconi, M., Carosati, E., Zamora, I., Mannhold, R. VOLSURF: A Tool for Drug ADME-Properties Prediction. In: *Methods and Principles in Medicinal Chemistry*. Eds. van de Waterbeemd, H., Lennernäs, H., Artursson, P. (Wiley-VCH Verlag GmbH & Co., Weinheim, 2003).

⁵ Pearlman, R.S.; Smith, K.M. Metric Validation and the Receptor-Relevant Subspace Concept. J. Chem. Inf. Comput. Sci. **1999**, *39*, 28-35.