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METHODS

As pointed out by Duarte and Pyle (1), the two-dimensional (2D) η-θ plot is a Ramachandran-
like diagram that can provide us a graphic representation of quantitatively distinct structural
features for analyzing and modeling RNA three-dimensional (3D) structures. Particularly,
they showed that on this η-θ plot, clusters of nucleotides with similar η and θ pseudo-torsional
angles have similar conformational properties and vice versa. To depict this η-θ plot, we
prepared a dataset that includes non-redundant crystal structures with minimum resolution
of 3.0 Å from the PDB database (2). This dataset finally contains 117 crystal RNA structures,
particularly including 74 structures used by Wadley et al. (3), with 9,527 nucleotides in total.
We then used AMIGOS that was developed by Duarte and Pyle (1) to calculate the η and
θ pseudo-torsion angles for all non-terminal nucleotides (9,267 nt in total) from all RNA
molecules in the above dataset and plotted these calculated pseudo-torsion angles on the axes
of a 2D plot as illustrated in Figure 1.

Instead of using the vector quantization (VQ) approach as done in our previous work
(4), we here applied the so-called affinity propagation (AP) clustering algorithm, introduced
by Frey and Dueck recently (5), to classify all the non-terminal nucleotides in our prepared
dataset according to their η and θ pseudo-torsion angles. Like k-means clustering algorithms,
the VQ approaches usually find locally optimum clusters and are sensitive to outliers and
noise (6), although it can be used to classify high dimensional data points. Besides, the VQ
methods need to keep track of a fixed set of candidate centers (or exemplars) while searching
for good solutions. Basically, the AP algorithm is an exemplar-based clustering method for
approximately solving the exemplar learning problem that aims to identify a set of data points
as exemplars and assign every data point to an exemplar so as to maximize a fitness function,
where notably the exemplar learning problem has been shown to be NP-hard (7). Denote
the input data points by x1, x2, . . . , xn, the exemplar assigned to xi by ci, and the similarity
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Figure 1: An η-θ plot of all non-terminal nucleotides from all RNA molecules in the dataset,
where the intersection of the perpendicular gray regions (150◦ ≤ η ≤ 190◦ and 190◦ ≤ θ ≤
260◦) is designated the helical region.

between xi and ci by s(xi, ci). Then the fitness function mentioned above is defined to be∑n
i=1 s(xi, ci). Notably, if xi is an exemplar (i.e., ci = xi), then this fitness function includes

the term s(xi, ci).
Basically, the AP algorithm operates by simultaneously considering all input data points

x1, x2, . . . , xn as potential exemplars and exchanging messages between data points until a
good set of exemplars and clusters emerges. For simplicity, the similarity s(xi, xj) between
two points xi and xj is also denoted as s(i, j). In each iteration, two kinds of messages, called
responsibility and availability, respectively, are exchanged between data points. The respon-
sibility r(i, k), which is sent from point xi to point xk, indicates the accumulated evidence for
how proper it would be for xk to serve as the exemplar of xi with taking into account other
potential exemplars for xi. Before being sent, the value of r(i, k) is updated according to the
following rule: r(i, k) = s(i, k) − max

k′:k′ �=k
{a(i, k′) + s(i, k′)}. The availability a(i, k), which is

sent from point xk to point xi, indicates the accumulated evidence for how proper it would
be for xi to choose xk as its exemplar with taking into account the support from other points
that xk should be an exemplar. The value of a(i, k) is updated as follows: if i �= k, then

a(i, k) = min{0, r(k, k) +
∑

i′:i′ /∈{i,k}
max{0, r(i′, k)}}; otherwise, a(k, k) =

∑
i′:i′ �=k

max{0, r(i′, k)}.

It should be noted that numerical oscillations may arise in some circumstances when updating
the above two messages. To avoid such oscillations, therefore, each message is set to λ times
its value from the previous iteration plus 1 − λ times its currently prescribed updated value,
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Figure 2: Twenty-three clusters classified by the AP algorithm.

where λ is a damping factor whose value is between 0 and 1. In this study, we used a default
damping factor of λ = 0.5. The above message-passing scheme is therefore referred to as
affinity propagation. At any point during the affinity propagation, responsibilities and avail-
abilities are combined to identify exemplars. That is, for data point xi, the k that maximizes
r(i, k)+a(i, k) indicates that xk is the exemplar of xi. Finally, the message-passing procedure
may be terminated after a fixed number of iterations (or after the changes in the messages fall
below a threshold or the local decisions stay constant for some number of iterations).

Note that each data point in this study corresponds to a non-terminal nucleotide of an
RNA 3D structure on the 2-dimensional η-θ plot and, therefore, the similarity between data
point xi and its exemplar ci defined in this study is the negative squared Euclidean distance
(that is, s(xi, ci) = −‖xi − ci‖2), if xi �= ci. As to xi = ci, the value of s(xi, xi) represents the
a priori preference for xi to serve as an exemplar and, therefore, it is not calculated in the
same way as s(xi, xk), where xi �= xk, because it does not represent an assignment similarity.
As suggested in (5), the preference values can be set to a global (shared) value, or customized
for particular data points. Particularly, moreover, high values of the preferences will cause the
AP algorithm to find many exemplars (clusters), while low values will lead to a small number
of exemplars. Here, we set a global value to s(xi, xi) for all 1 ≤ i ≤ n such that a total of
9,267 non-terminal nucleotides on the η-θ plot is classified into 23 conformation clusters, as
was illustrated in Figure 2. The 3D conformations of these 23 exemplar nucleotides are shown
in Figure 3.

For our purpose of transforming RNA 3D structures into 1D sequences, we further assigned
a letter to each of 23 clusters, as named in Table 1. We used the set of these 23 letters as a
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Figure 3: Three-dimensional conformations of 23 exemplar nucleotides, where the exemplar
nucleotides are shown in green, whereas the portions of the previous and next nucleotides that
affect the pseudo-torsions are shown in blue.

structural alphabet (SA) and encoded RNA 3D structures as 1D sequences of SA letters by
using the nearest neighbor rule, by which each nucleotide in an RNA molecule is assigned with
the letter of the cluster whose exemplar (center) is nearest to the nucleotide being encoded.
Next, like ordinary nucleotide (or amino acid) sequences, we applied methods of classical
sequence alignments, such as global (8), semiglobal (9), local (10) and normalized local (11)
alignments, to the SA-encoded 1D sequences of two RNA 3D structures for determining their
structural similarities. In this study, we chose 23 as the number of the clusters on the η-θ
plot based on the following two reasons. First, over 60% of nucleotides on the η-θ plot fall
within the helical region (defined by the intersection of the two perpendicular gray regions
in Figure 1). As illustrated in Figure 2, the helical region is partitioned into four clusters
when N = 23. However, if N = 46, then an overpartitioning (with more than 10 clusters)
in this helical region can be observed. This overpartitioning results was actually due to the
fact that the helical region is so highly populated in the dataset of currently collected RNA
structures that any clustering algorithm may tend to divide it into a lot of clusters. In fact,
according to our experiments (data not shown), the value of the AUC obtained using our
testing dataset with N = 46 is not better than that with N = 23. Second, choosing N = 23
will allows one to apply BLAST, the most widely used tool of sequence homology search,
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Table 1: The structural alphabet of 23 conformational clusters classified by the AP algorithm
with their associated letters and the η and θ pseudo-torsion angles of their exemplars.

No. Letter (η, θ) No. Letter (η, θ) No. Letter (η, θ)
1 A (168.7, 221.4) 9 I (208.5, 167.9) 17 Q (162.5, 1.4)
2 B (169.1, 205.7) 10 J (23.1, 228.9) 18 R (248.7, 218.9)
3 C (167.3, 235.1) 11 K (229.4, 104.9) 19 S (318.9, 127.7)
4 D (163.7, 257.1) 12 L (179.8, 71.4) 20 T (299.4, 3.2)
5 E (169.4, 179.5) 13 M (203.8, 307.5) 21 V (88.3, 292.5)
6 F (139.7, 216.6) 14 N (92.5, 232.2) 22 W (48.3, 52.5)
7 G (194.1, 227.2) 15 O (69.6, 153.8) 23 X (5.9, 314.3)
8 H (173.3, 125.9) 16 P (310.6, 220.1)

for efficiently performing the structurally similar search on the database consisting of the
SA-encoded sequences of RNA 3D structures.

For the accuracy of aligning two SA-encoded sequences, we derived a 23 × 23 log-odds ma-
trix for SA-letter substitution using the statistical method proposed by Henikoff and Henikoff
(12). Let {a1, a2, . . . , a23} denote the structural alphabet of 23 SA letters and fij be the ob-
served substitution frequency of SA-letter pair (ai, aj). Then the relative frequency qij of an

SA-letter pair (ai, aj) is qij =
fij∑23

k=1

∑k
l=1 fkl

, and the frequency of occurrence of SA letter

ai in an SA-letter pair (ai, aj) is pi = qii +

∑23
k=1,k �=i qik

2
. The expected frequency eij for a

substitution between two SA-letters (ai, aj) is pipj for i = j and pipj + pjpi = 2pipj for i �= j.

The logarithm of the odds matrix is finally calculated by score(ai, aj) = λ log2

(
qij
eij

)
, where λ

is a positive scale factor.
For the purpose of constructing this BLOSUM-like matrix, a dataset of structurally similar

RNA pairs was obtained from the DARTS database (13), which used an automated method
to classify 1,333 RNA tertiary structures into 244 groups of highly identical structures, and
the SCOR database (14, 15), which organized many RNA structural motifs in a hierarchical
classification system similar to the SCOP database for protein domains. From the initial
dataset of 1,333 high-resolution RNA 3D structures, the DARTS database first selected 244
representative structures based on RNA sequence and 3D structure resemblances and then
marked each of the remaining structures as either a highly identical structure or a highly
identical fragment of a representative structure. A highly identical structure is defined as a
structure that is globally almost identical (i.e., with at least 90% sequence or 3D structure
identity) to some other structure of similar size (i.e., size ratio1 is between 1 and 1.5), while
a highly identical fragment is defined as a structure that is almost identical to only a small
substructure of a larger structure (i.e., size ratio is greater than 1.5). Note that 101 out of 244
representative structures have no highly identical structure. For our purpose, we used only
the remaining 143 representative structures and their highly identical structures to construct
our BLOSUM-like matrix. In addition, a set of structurally similar RNA motif pairs was
obtained from the SCOR database based on the following criteria: (1) motifs must belong

1The size ratio is defined as the number of nucleotides of the bigger structure divided by the number of
nucleotides of the smaller structure.
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Figure 4: The BLOSUM-like substitution matrix for the 23 SA-letters we derived in this study.

to a structural family, (2) motifs must have length greater than 3 nt, (3) motifs must have
specified starting and ending positions in the chain, and (4) motif pairs must have no 100%
sequence identity. In total, 3,391 RNA structural alignment pairs from 143 DARTS groups of
686 high-resolution RNA 3D structures and 430,628 RNA motif pairs from 334 SCOR classes
of 6,220 structural motifs were analyzed, which together accounted for 8,500,322 SA-letter
pairs. The λ value used in this study was set to 1.6 for the best performance, by testing
various values ranging from 1 to 2. Figure 4 illustrates the BLOSUM-like substitution matrix
for the 23 SA-letters we derived in this study.

As we done before (4), we implemented four different types of pairwise alignments that
are global (8), semiglobal (9), local (10) and normalized local (11) alignments for a variety of
practical applications. Moreover, a grid-like search procedure was performed to optimize the
parameters of open and extension gap penalties by varying the open gap penalty from −15 to
−1 in steps of 1 and the extension gap penalty from −3 to −0.5 in steps of 0.5. It is worth
mentioning here again that the Smith-Waterman algorithm (10) for the local alignment was
originally designed to remove non-similar initial and terminal fragments but not non-similar
internal fragments in a sequence alignment, resulting in a so-called mosaic effect by including
poor internal fragments in a local alignment (11). Such a mosaic effect still can be observed in
local alignments of two RNA 3D structures, as demonstrated on the help page of our iPARTS
server. To eliminate this mosaic effect, we implemented the algorithm proposed by Arslan
et al. (11) to solve the so-called normalized local alignment problem, which aims to find the
subsequences, say I and J , of two given sequences that maximizes S(I, J)/(|I|+ |J |) among all
subsequences I and J with |I|+ |J | ≥ T , where S(I, J) is the alignment score between I and
J , and T is a threshold for the minimal overall length of I and J . Usually, an alignment should
be sufficiently long to be biologically meaningful. Therefore, the above length constraint of
|I|+|J | ≥ T is necessary, since length normalization in the normalized local alignment problem
favors short local alignments. The user can vary the value of T to control the result of optimal
normalized local alignment. If T is small, the optimal normalized local alignment tends to
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be short; otherwise, it tends to be a long local alignment that may contain some non-similar
internal fragments.
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