

Supplemental Figures

Supplemental Figure 1. Gene conservation by evolutionary distance. Gene sequence conservation at the peptide level. Each point represents a BLAST comparison between two genomes at a 10^{-10} threshold. The x-axis represents the 16S distance between the two genomes, while the y-axis represents the proportion of genes in the query genome present in the subject genome. Genome - genome comparisons were subdivided into series by taxonomic group, with members of the same division represented by the same shape and shades of the same color. The dashed black line represents exponential regression of the full data set. r^2 values for exponential regression of each series were: All data, $r^2 = 0.60$; Actinobacteria, $r^2 = 0.53$; Bacteroidetes, $r^2 = 0.75$; Clostridia, $r^2 = 0.57$; Lactobacillales, $r^2 = 0.70$; δ -Proteobacteria, $r^2 = 0.63$; ϵ -Proteobacteria $r^2 = 0.37$; γ -Proteobacteria $r^2 = 0.60$

Supplemental Figure 2. Correlation between phylogenetic distance and 16S rRNA percent identity.

Supplemental Tables

Taxon	N	p	P
		(Mantel test)	(Mantel test Log(y))
Actinobacteria	41	0.0000	0.0000
Bacteroidetes	9	0.0001	0.0000
Firmicutes	22	0.0000	0.0000
Clostridia			
Firmicutes -	43	0.0000	0.0000
Bacilli			
(Lactobacillales)			
Proteobacteria -	16	0.0000	0.0000
Delta			
Proteobacteria -	11	0.0004	0.0005
Gamma			
Proteobacteria -	28	0.0000	0.0000
Gamma			
(Enterobacteria)			

Supplementary Table 1. Significance of correlation between evolutionary distance and gene content conservation within diverse taxonomic groups. Significance was assessed within each taxonomic group using a Mantel test with 10,000 permutations.

Values were calculated for either the unmodified matrices or for the log (gene content conservation). In all cases, the correlation between evolutionary distance and gene content conservation was statistically significant

Taxon	Env	n	р	p
			(Mantel test)	(Mantel test Log(y))
Actinobacteria	N	39	0.0000	0.0000
Bacteroidetes	G	4	0.0406	0.0414
	N	5	0.0164	0.0175
Firmicutes -	G	4	0.0777	0.0844
Clostridia	N	18	0.0000	0.0000
Firmicutes -	GC	18	0.0000	0.0000
Lactobacillales	N	24	0.0000	0.0000
Proteobacteria-	N	15	0.0000	0.0000
Delta				
Proteobacteria-	G	6	0.0207	0.0223
Epsilon	GC	2	1.0000	1.0000
	N	3	1.0000	1.0000
Proteobacteria-	GC	22	0.0000	0.0000
Gamma	N	16	0.0000	0.0000
(Enterobacteria)				

Supplementary Table 2. Significance of correlation between evolutionary distance and gene content conservation within gut specialist, cosmopolitan, or non-gut members of diverse taxonomic groups. Significance was assessed within each taxonomic group using a Mantel test with 10,000 permutations. Values were calculated for either the unmodified matrices or for log (gene content conservation). The correlation between evolutionary distance and gene content conservation was statistically significant, except in cases where very few (n < 5) genomes were present in a category. G, gut-specialist to gut specialist comparisons; GC, gut – cosmopolitan to gut-cosmopolitan comparisons; N, non-gut to non-gut comparisons.

Taxon	N	p	p
		(Mantel test)	(Mantel test Log(y))
Actinobacteria	13	0.0000	0.0000
Bacteroidetes	3	0.1609	0.1724
Firmicutes - Clostridia	8	0.0000	0.0000
Firmicutes - Lactobacillales	7	0.0198	0.0386
Proteobacteria - Delta	6	0.0027	0.0029
Proteobacteria - Epsilon	-	-	-
Proteobacteria - Gamma (Enterobacteria)	23	0.0001	0.0000

Supplementary Table 3. Significance of correlation between evolutionary distance and gene content conservation in plasmids. Significance was assessed within each taxonomic group using a Mantel test with 10,000 permutations. Values were calculated for either the unmodified matrices or for evolutionary distance and log (gene content conservation). Surprisingly, the correlation between evolutionary distance and gene content conservation was statistically significant, except in Bacteroidetes, where few (n=3) plasmids were present in the data set.