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Data

Reads were obtained from the data sources indicated in
the various publications, see Supplementary Table S3
for details.

The phi X data as well as the WT data have been
deposited to the Short Read Archive (SRA) at NCBI
under the accession number SRA009901.

Mapping

For each experiment, a single lane was chosen at random
for analysis. The only exception is Mortazavi (1),
where the available data are reads from an entire sample
(pooled across several lanes).

Reads were mapped using Bowtie(15), version
0.9.8.2. The argument list includes -v 0 -m 1
--tryhard, ensuring that only reads mapping
uniquely with zero mismatches to the reference genome
are kept. Bowtie considers the “N” nucleotide a
no-match to any base.

Genomes were obtained from the UCSC genome
browser. The UCSC version numbers are hg18 for
H. sapiens, sacCer1 for S. cerevisiae, and mm9
for M. musculus. The genome for φX 174 was
obtained from NCBI (accession number NC 001422)
and the genome for S. pombe from Sanger (files
Chromosome[123].fasta dated “August 23,
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2007”).

Annotations were also obtained from UCSC. The tables
used were sgdGene for sacCer1, ccdsGene for
hg18, and ccdsGene for mm9.

Free energies

Binding energies were computed using the program
“DAN”, from the Mobyle webserver hosted at the Pas-
teur Institute, which provides access to the EMBOSS
(16) suite of programs. Default parameter values were
used, except for the flag “use rna data values”
which was set to true, to ensure that binding energies for
RNA-DNA duplexes were computed.

Part of the table of binding energies is provided below;
we used the column DeltaG for ∆G in Figure S3.

Sequence Tm GC DeltaG DeltaH DeltaS
AAAAAA -39.7 0 -5.570 -33 -92.0
CCCCCC 35.2 100 -16.725 -61 -148.5
GGGGGG 35.2 100 -16.725 -61 -148.5
TTTTTT -39.7 0 -5.570 -33 -92.0

...

Re-weighting scheme

We show in this manuscript that there is a bias in the
nucleotide frequencies at the beginning of reads. We
present an approach for adjusting the biased distribution
at the beginning of the reads, so that it is similar
to the distribution at the end of the reads, which we
assume to be reflective of the nucleotide content of the
transcriptome. We do this by associating a weight with
each read, such that reads beginning with a heptamer
over-represented in the distribution at the beginning
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relative to the end are down-weighted and vice-versa.
Then, the expression level of a genomic region (e.g.,
exon) is obtained by adding the weights of the reads
falling in that region.

Consider a set of mapped reads. Let p̂hep:i be the
observed heptamer distribution for positions i to i+6, so
that p̂hep:1 refers to the distribution of the first heptamer
of the reads (positions 1 to 7). Define a set of heptamer
weights by

w(h) =
1
6

∑29
i=24 p̂hep:i(h)

1
2

(
p̂hep:1(h) + p̂hep:2(h)

)
where h denotes a heptamer (out of 47 = 16, 384).
This set of weights is referred to as the “recommended”
weights. We also consider two alternative sets of
weights. One is the “naive” set of weights, which
simply uses the distribution of the first heptamer in the
denominator,

wnaive(h) =
p̂hep:29(h)

p̂hep:1(h)

The other set of weights is used as a “control”, in that it
is superficially similar to the recommended set, but with
adverse effects,

wcontrol(h) =
1
6

∑29
i=24 p̂hep:i(h)

p̂hep:2(h)

Supplementary Figure S8 shows the marginal distribu-
tions of the three sets of weights, which are very similar
and symmetric (on the log scale) around 0.

A mapped read is associated with the stranded genomic
location of its 5’-end. A stranded genomic location
is considered mappable, if the read associated with
the location maps uniquely to the genome. If the
first heptamer of the read is h, the weight associated
with the read is w(h). The unadjusted base-level
count for a stranded genomic location is the number
of reads associated with the stranded location and the
re-weighted base-level count is the sum of the weights
associated with these reads.

As an example, consider data from the WT experiment
in S. cerevisiae (5) (7.8 million mapped reads). The
following is an excerpt of the base-level unadjusted
and re-weighted counts associated with locations on the
sense strand of a highly-expressed gene (YOL086C).

strand location heptamer count weight re-weighted
l h(l) c(l) w(h(l)) count, cw(l)

. . .
-1 159792 TTGGTCG 17 1.39 23.6
-1 159793 TTTGGTC 17 0.25 4.3
-1 159794 TTTTGGT 65 0.31 20.4
-1 159795 GTTTTGG 72 0.32 23.3
-1 159796 CGTTTTG 10 1.66 16.6
. . .

Here, l is the genomic location, h(l) is the heptamer
associated with a read mapped to this location, and c(l),
w(h(l)), and cw(l) = c(l)w(h(l)) are, respectively,
the unadjusted base-level count, the weight, and the re-
weighted base-level count.

Evaluating the re-weighting scheme

The re-weighting scheme is evaluated on a genome-
wide scale using four datasets from S. cerevisiae (6-10
million mapped reads per dataset), with labels “WT”,
“IsoWT”, “XRN”, and “RLP” (5), and one dataset
from H. sapiens (80 million mapped reads), labelled
“MAQC” (6), see Supplementary Table S1. In all
cases, a single sample was sequenced on multiple lanes,
although several library preparations were pooled for
the “MAQC” dataset. The data labeled “Bullard” in
Figure 1 correspond to a single lane from the “MAQC”
dataset and the data labelled “Lee” in Figure 1 corre-
spond to a single lane from “IsoWT”.

Based on annotation, regions of constant expression
(ROCEs) were defined as genomic regions of maximal
size such that all bases in the region are annotated as
belonging to the same set of transcripts. (For example,
two overlapping genes will be split into three ROCEs.)
In general, ROCEs roughly correspond to coding se-
quences in S. cerevisiae and exons in H. sapiens. Fur-
thermore, we required at least 100 mappable bases (for
S. cerevisiae) and 50 mappable bases (for H. sapiens)
and an average (stranded) unadjusted base-level count
of at least one (on either strand). Roughly 10% of
possible ROCEs are selected for each dataset, focusing
on non-small, highly-expressed regions (Supplementary
Table S2).

Pearson χ2 goodness-of-fit statistics were calculated for
each strand of each ROCE. The statistic is defined as

χ2 =

L∑
l=1

(d(l) − λ)2

λ

where L is the number of mappable bases in the ROCE,
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l indexes mappable bases, d(l) is the unadjusted or re-
weighted base-level count (either d(l) = c(l) or d(l) =
cw(l), as defined above), and λ =

∑
l d(l)/L is the

average (unadjusted or re-weighted) base-level count
for the ROCE. Coefficients of variation were calculated
in a similar manner, except that unmappable bases as
well as bases with zero counts were excluded. (This
was done to ensure that the large number of bases
with zero counts did not adversely affect estimation of
the standard deviation.) Anscombe residuals(17) were
computed as

rans
l =

3/2
(
d(l)2/3 − λ2/3

)
λ1/6

These are known to approximately have a standard
normal distribution, if the base-level counts d(l) are
independently and identically Poisson distributed.

There is one possible concern when evaluating the re-
weighting scheme with the Pearson χ2 goodness-of-fit
statistic. If all weights are equal w(h) = w, the Pearson
χ2 goodness-of-fit statistic for the re-weighted base-
level counts is exactlyw times the Pearson χ2 goodness-
of-fit statistic for the unadjusted counts, implying that
we report an improved fit by trivially setting the weights
to be equal and less than one,w(h) = w < 1. This is not
desirable behavior for a goodness-of-fit statistic, which
is why we also consider the coefficient of variation that
does not have this problem. Note, however, that the log-
arithm of our recommended weights are symmetrically
distributed around zero (Figure S8c), showing that only
around 50% of the weights are less than one.

Stranded coverage plots were made by adding the
weights of reads associated with each base in each
stranded ROCE (weights of one for unadjusted counts).
For such a standard coverage plot, each position of
the read is assigned the same weight. We have also
considered position-specific weights, where each base
j is associated with the heptamer hj starting at that
position and the weight wj for base j is defined by

wj(hj) =
p̂hep:29(hj)

p̂hep:j(hj)

This variant had little effect on the coverage plot.

Supplementary Results

Adjusting for the bias

We evaluate the re-weighting scheme on regions that
are expressed highly enough to allow consideration of
base-level behavior (Supplementary Methods). These
ROCEs account for roughly 10% of an organism’s
exons or coding regions. Supplementary Figure S6
shows data from one such region in S. cerevisiae. The
re-weighted base-level counts have fewer and smaller
extreme values than the unadjusted base-level counts
and the associated Anscombe residuals(17) are smaller
and more symmetrically distributed around zero. This
is reflected in a substantial decrease in the Pearson
χ2 goodness-of-fit statistics. However, even after re-
weighting, the Pearson χ2 goodness-of-fit statistics are
still very large, indicating that the re-weighted base-
level counts are far from uniformly distributed along the
region. There is only a small effect on the coverage plot;
while all high coverage peaks are reduced in magnitude,
substantial heterogeneity still remains.

The decrease in extreme base-level counts is reflected in
the reduction of the Pearson χ2 goodness-of-fit statistics
and coefficients of variation (Supplementary Figures S7
and S8). The re-weighted Pearson χ2 goodness-of-fit
statistics are roughly 50%-65% (dataset dependent) of
the unadjusted statistics across the subset of highly-
expressed regions.

Supplementary Figure S8 also depicts the effect of re-
weighting using two alternative sets of weights. One
set, denoted control weights, is based on using but
the second heptamer of the read (positions 2 to 8).
Unsurprisingly, this set of weights performs poorly,
with a substantial increase in Pearson χ2 goodness-of-
fit statistics and coefficients of variation, despite the
control weights having a marginal distribution very
similar to that of the recommended weights. This
shows that the performance improvement when using
the recommended weights is not accidental. Also shown
in Supplementary Figure S8 is the performance of naive
weights, using just the first heptamer of the read. It
is intriguing that the recommended weights perform
much better than the naive weights. The recommended
weights and the naive weights differ in two aspects.
First, the recommended weights represents the distribu-
tion of heptamers at the end of the reads by averaging
heptamer distributions starting at positions 24 to 29, as
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opposed to simply using the heptamer distribution at
position 29. This is a natural variance reduction method,
however the performance improvement is very modest
(data not shown). The substantial performance improve-
ment comes from estimating the heptamer distribution
at the beginning of the reads by averaging the heptamer
distributions starting at positions 1 and 2, something
that is surprising given that these two distributions are
very different. Note that the performance improvements
from using the recommended set of weights instead of
the naive weights are dataset dependent, with the biggest
effect on “IsoWT” and “RLP” that were sequenced in
the same batch. A possible, but unsatisfying explanation
is that, due to end-repair, the first sequenced nucleotide
may not be the first nucleotide of the primer.

There could be some concern over the fact that we
apply the weights on the same dataset that was used
for estimation. Specifically, since a substantial number
of reads map to highl-expressed ROCEs, the weights
might be optimized for these regions. To address
this, we have evaluated the re-weighting scheme by
estimating the weights using only reads mapping to the
genome, but not to highly-expressed ROCEs. There is
no discernible difference in performance when using
these two estimation methods. For convenience, we
recommend estimating weights using all reads mapping
to the genome.
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Supplementary Tables and Figures

Experiment Category Organism Read Total Number Number of Percent
Length of Reads Mapped Reads Mapped

Bentley (8) DNA H. sapiens 37 4,255,242 2,419,677 57
Bloom (13) RNA, other S. cerevisiae 32 5,254,616 2,203,211 42
Bullard (6) RNA H. sapiens 35 14,032,875 6,357,627 45
Chiang (10) DNA H. sapiens 36 4,610,681 1,415,113 31
Lee (5) RNA S. cerevisiae 36 11,147,684 2,425,485 22
Mamanova (18) - 37 6,246,372 1,541,669 25
Marioni (3) RNA H. sapiens 32 13,017,169 2,947,601 23
Meissner (9) DNA M. musculus 36 9,469,890 3,137,481 33
Mikkelsen (11) DNA M. musculus 36 6,389,720 511,408 8
Mortazavi (1) RNA M. musculus 25 31,116,663 8,144,763 26
Nagalakshmi, RH (14) RNA, other S. cerevisiae 35 6,219,951 394,358 6
Nagalakshmi, DT (14) RNA, other S. cerevisiae 35 3,444,654 378,593 11
phi X DNA φX 45 6,133,524 4,188,163 68
Wang, heart (7) RNA H. sapiens 32 20,169,301 7,423,983 37
Wang, brain (7) RNA H. sapiens 36 10,112,968 3,097,183 31
Wang, DNA (4) DNA H. sapiens 23 2,701,647 1,433,185 53
Wilhelm (12) RNA, other S. pombe 38 2,697,239 1,133,432 42

Table S1. Numerical summaries of the different experiments. Number of total and mapped reads for each
experiment, as well as read length. The following shorthand notation is used in the “Category” column, “RNA”
for “RNA-Seq”, “DNA” for “DNA-Seq”, and “RNA, other” for “RNA-Seq, other protocols”. Most datasets
corresponds to a single lane worth of data, although there are exceptions. Note that some of the input files have
been “purity filtered” according to standard settings in the Illumina pipeline and some have not. Purity filtering
typically removes around 50% of the reads and is not specified in the data files. Hence, comparisons of “Percent
Mapped” between different data sources are difficult.
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Name Organism Lanes Read Total Number Number of Percent Number of
Length of Reads Mapped Reads Mapped ROCEs

MAQC H. sapiens 2x7 35 183,797,505 80,454,187 44 27,596
IsoWT S. cerevisiae 1x4 36 45,101,647 9,611,129 21 662
WT S. cerevisiae 1x4 36 46,087,723 7,832,287 17 552
XRN S. cerevisiae 1x4 36 46,716,590 5,945,829 13 459
RLP S. cerevisiae 1x4 36 45,346,044 9,939,379 22 711

Table S2. Numerical summaries of datasets used to evaluate the re-weighting scheme. The dataset “MAQC” is
from (6), while the datasets “IsoWT”, “WT”, “XRN”, and “RLP” all are from (5). The notation “XxY” in the
“Lanes” column indicates the sample was run on “X” flow-cells and “Y” lanes (per flow-cell). The number of
ROCEs is the number of highly-expressed regions in Figures S6- S8.
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Experiment File Source

Bentley 200x36x36-071113 EAS56 0053-s 1 2.fastq SRA
Bloom RMg9.fastq Caudy Lab
Bullard FL1 B 4 export.txt SRA
Chiang SRR002793.fastq SRA
IsoWT SRR003157.fastq, SRR003158.fastq SRA

SRR003159.fastq,SRR003160.fastq
Lee SRR003159.fastq SRA
Mamanova ERR007689 1.fastq ENA
Marioni s 1 eland result.txt SRA
MAQC SRX16369, SRX16370 SRA

SRX16371, SRX16372
Meissner 205CY.7.all.fastq Broad
Mikkelsen 13530.2.all.fastq Broad
Mortazavi mm9Brain1.comb.eland2 Wold Lab
Nagalakshmi, RH SRR002058.fastq SRA
Nagalakshmi, DT SRR002062.fastq SRA
phi X SRA009901 SRA (this study)
RLP SRR003161.fastq, SRR003162.fastq SRA

SRR003163.fastq, SRR003164.fastq
Wang, heart GSM325478 heart HCT170 hg18realign.txt GEO
Wang, brain GSM325490 brain s1368 realign.txt GEO
Wang, DNA 070706 S80 FC6083 L1 YHDASA.fq BGI
Wilhelm run30 s7 Spombe cDNA.fastq AE
WT SRA009901 SRA (this study)
XRN SRR003169.fastq, SRR003170.fastq SRA

SRR003171.fastq, SRR003172.fastq

Table S3. Data sources. For each experiment, we note what input file was used in this manuscript and from where
it was obtained. “GEO” is the gene expression omnibus, “SRA” is the short read archive, “AE” is Array Express,
“ENA” is the European Nucleotide Archive, “BGI” is the Beijing Genomics Institute website(1), “Wold Lab” is
the Wold Lab website(2), “Caudy Lab” is the Caudy lab website(3), “Broad” is the Broad Institute website(4), and
“SRA (this study)” means the data was submitted to SRA as part of this manuscript.
(1) http://yh.genomics.org.cn/rawdataDownload.jsp
(2) http://woldlab.caltech.edu/html/rnaseq
(3) http://genomics.princeton.edu/caudylab/yeast_cDNA_sequencing
(4) ftp://ftp.broad.mit.edu/pub/papers/chipseq

http://yh.genomics.org.cn/rawdataDownload.jsp
http://woldlab.caltech.edu/html/rnaseq
http://genomics.princeton.edu/caudylab/yeast_cDNA_sequencing
ftp://ftp.broad.mit.edu/pub/papers/chipseq
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Protocol Group Experiments

mRNA fragmentation, followed by RNA-Seq Bullard, Lee, Marioni,
random hexamer priming Mortazavi

Random hexamer priming, no fragmentation RNA-Seq Wang (heart, brain)
Random hexamer priming, followed by RNA-Seq, other protocols Nagalakshmi, RH

cDNA fragmentation using DNase I
Oligo-dT priming, followed by RNA-Seq, other protocols Nagalakshmi, DT

cDNA fragmentation using DNase I
Oligo-dT priming, followed by RNA-Seq, other protocols Wilhelm

cDNA fragmentation by nebulization
Oligo-dT priming, followed by RNA-Seq, other protocols Bloom

cDNA fragmentation by sonication

Table S4. Overview of RNA-Seq protocols. All experiments used poly-A selection to enrich for mRNA, except
for “Bloom” that employed ribominus to deplete the sample of rRNA.
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Figure S1. Nucleotide frequency vs. position for all reads. See Supplementary Table S1 for the total number of
reads. This figure is comparable to Figure 1. Since the reads have not been mapped, they cannot be extended
upstream and may include an “N” call.
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Figure S2. Nucleotide frequency vs. position for mapped DNA-Seq reads by fragmentation method. This figure
is a more careful look at the “DNA-Seq” data from Figure 1, where the experiments have been split by
fragmentation method. “Mikkelsen” and “Meissner” refer to ChIP-Seq experiments performed by the same group
at the Broad Institute. The experimental protocol describes the fragmentation as using either a “Branson 250
Sonifier or a Diagenode Bioruptor” to a size range of 200-700bp followed by ChIP. The “Chiang” experiment
“sheared the DNA according to Illumina’s protocols” and was grouped with the “Wang” experiment based on
visual assessment of their similarity. Both “Wang” and “Bentley” used fragmentation by nebulization; for “Wang”
the fragmentation lasted 9 minutes, while for “Bentley” it lasted 6 minutes. “phi X” is a control lane and was
grouped with “Bentley” based on visual assessment. The two ChIP-Seq experiments show a pattern distinctly
different from the DNA-Seq experiments. There is some similarity between the 9-minute and 6-minute
nebulization. The patterns extend upstream of the first base of the read, consistent with a fragmentation effect.
The conclusion is that the employed fragmentation method does create a distinct pattern, but much smaller in
magnitude than that caused by the RNA-Seq random hexamer priming. Legend as in Supplementary Figure S1.
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Figure S3. Hexamer frequencies vs. binding energies. For each hexamer, the logarithm (base 2) of its frequency
is plotted against its binding energy (see Supplementary Data, Methods). Depicted are an experiment in S.
cerevisiae (5) (“Lee”), an experiment in H. sapiens (6) (“Bullard”), and an experiment in S. pombe (12)
(“Wilhelm”), with hexamer frequencies computed either at the beginning of the reads (positions 1 to 6) or at the
end (positions 25 to 30). The red line is a lowess smoother (a robust local regression). The “Wilhelm”
experiment, which used oligo-dT primers, and the hexamer distributions at the end of the reads serve as controls.
The high correlation between hexamer frequency and binding energy for the “Wilhelm” and “Lee” experiments is
a feature of the two organisms’ transcriptomes and not of the use of random hexamers for priming. Indeed, it
appears that the use of random hexamers for priming in the S. cerevisiae experiment leads to worse correlation.
The distributions depicted in the figure are representative; experiments in D. melanogaster and M. musculus show
the same relationship between hexamer frequencies and binding energies as the “Bullard” experiment.
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Figure S4. Nucleotide frequency vs. position for stringently mapped, stranded RNA-Seq reads. As Figure 3, but
for all four nucleotides.
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Figure S5. Dinucleotide transition probabilities vs. position for stringently mapped RNA-Seq reads. Transition
probabilities are defined as probabilities of a downstream dinucleotide conditional on the upstream dinucleotide.
The row label indicates the “From” dinucleotide, while the column label indicates the “To” dinucleotide. For
example, the upper right-hand corner shows the frequency of “AT” conditional on observing an “AA”, at each
position in the read. This figure only shows a subset of the entire set of 42 × 42 = 256 transition probabilities.
Note that the scale of the y-axis is different from other figures in this manuscript since there are 16 dinucleotides
and only 4 nucleotides. The position indicates the 5’ nucleotide of the four nucleotides corresponding to the
conditional distributions. In this figure, we examine whether the transition probabilities show a pattern and how
far it extends. Since the pattern extends to position 10, we conclude that the nucleotide frequency pattern seen in
Figure 1 is not solely caused by a bias in positions 1 to 6 combined with serial correlation of nucleotides in the
transcriptome. Legend as in Supplementary Figure S1.
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Figure S6. The effect of re-weighting on a single gene. The gene shown is the sense strand of YOL086C for the
“WT” experiment in S. cerevisiae(5). The plots of unadjusted and re-weighted counts show the base-level counts
starting at each location. The Anscombe residuals(17) are designed to have an approximately standard normal
distribution if the base-level counts are Poisson distributed. The ticks on the x-axis indicate unmappable bases.
The base-level counts have fewer and smaller extreme values using the re-weighting scheme, also reflected in the
Anscombe residuals that become more symmetric around zero. There is less effect of the re-weighting on the
coverage plot, although the magnitudes of the coverage peaks are reduced. The Pearson χ2 goodness-of-fit
statistic for this region is reduced from 63,022 to 30,620 and the coefficient of variation from 1.68 to 1.27. See
Supplementary Data for details.
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Figure S7. The effect of re-weighting on the Pearson χ2 goodness-of-fit statistic and coefficient of variation. The
data are base-level counts of the sense strand of 552 highly-expressed, non-small regions of constant expression
for the “WT” experiment in S. cerevisiae. (a) Pearson χ2 goodness-of-fit statistics for the re-weighted vs.
unadjusted base-level counts. (b) A close-up of (a). (c) A density estimate of the distribution of ratios between the
re-weighted and the unadjusted Pearson χ2 goodness-of-fit statistics (values less than one represent improvement
due to re-weighting). (d)-(f) As (a)-(c), but for the coefficient of variation. The results for the anti-sense strand are
similar, with a slightly larger improvement.
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Figure S8. The effect of re-weighting on several datasets, for different re-weighting schemes. For each
re-weighting scheme, each dataset, and the sense strand of highly-expressed, non-small regions of constant
expression, the effect of re-weighting on the Pearson χ2 goodness-of-fit statistic and the coefficient of variation
(values less than one are improvements for re-weighting) is assessed. Compare to Figure S7c and S7f. The data
for the anti-sense strand show similar but slightly better improvements. Also shown is the marginal distribution of
the logarithm (base 2) of the weights. Three sets of weights are shown, all described in the Supplementary
Methods. “Recommended weights” refer to the set of weights we found to perform best, “control weights” are
used as an example of weights which perform poorly, and “naive weights” are a simple example of the
re-weighting idea.
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Figure S9. Data from Mamanova et al.(18), generated using the FRT-Seq protocol. This is the first read from a
paired-end experiment. Also depicted is a randomly primed RNA-Seq dataset, also from H. sapiens (this dataset
is also depicted in Figure 1). While the two datasets are from the same organism, they are from different
commercially available RNA. As in Figure 1, the reads have been extended 20 bases upstream and downstream
using the genome. We see very little pattern in the FRT-Seq data, although there is some nucleotide bias near the
first base of the read (with most of it upstream from actual read). Note that the lack of independent datasets
generated using the same protocol makes it hard to infer whether this is a general phenomena.


