1 Supplementary information

3 Supplementary materials and methods

Table I. List of strains used in this study

Strain	Genotype	Reference
A2	h ⁺ ade6-M216 his3-D1 leu1 1-32 ura4-D	lab stock
972	h	lab stock
$oca2\Delta$	h ⁺ ade6-M216 his3-D1 leu1 1-32 ura4-D18 oca2∆::kanMX6	lab stock
oca2-HA	h ⁺ ade6-M216 his3-D1 leu1 1-32 ura4-D18 oca2-HA::kanMX6	lab stock
oca2∆-20	h⁻ oca2∆::kanMX6	this study
$cha4\Delta$	h ⁺ ade6-M216 his3-D1 leu1 1-32 ura4-D18 cha4∆::kanMX6	this study
$agol\Delta$	h ⁺ ade6-M216 his3-D1 leu1 1-32 ura4-D18 ago1 ∆::kanMX6	this study
$hat I \Delta$	h [∓] ade6-M216 his3-D1 leu1 1-32 ura4-D18 hat1 ∆::kanMX6	this study
clr6-1	h ⁻ clr6-1	(S4)
$clr4\Delta$	h ⁺ clr4::hph ⁺ otr1R(SphI)::ade6-M210	Robin Allshin
oca2∆ clr6-1	h? ade6-M216 leu1 1-32 oca2 ∆::kanMX6 clr6-1	this study
wt	h ⁺ leu1-32 ade6-M216 ura4-D18 imr1R(NcoI)::ura4 ⁺ oriI	Marc Buehler
rrp6∆	h ⁺ leu1-32 ade6-M216 ura4-D18 imr1R(NcoI)∷ura4 ⁺ oriI rrp6∆∷Nat ^R	Marc Buehler
Flag-ago1	h ⁺ otr1R(SphI)::ura4 ⁺ ura4-DS/E leu1-32 ade6-M210 Nat ^R -nmt1-3xFlag::ago1	(S1)

Name	Systematic name	
oca2	SPCC1020.10	
ppk8	SPAC22G7.08	
cha4	SPBC1683.13c	
hat1	SPAC139.06	
prw1	SPAC29A4.18	
perl	SPAP7G5.06	
put4	SPAC869.10	

1	<u>Table III. L</u>	ist of primers used in this study	
2	Name	sequence/reterence	purpose
3	1F	TGTGTCTCGGCTTACCCTTC	ChIP per1
4	1 R	GCGGAAAGAGACGGATAACA	ChIP <i>per1</i> , 5'RACE
5	1BR	GTGCAATCTACTAGCAACCAAG	5'RACE
6	2F	GCTCTCCAAGTGCCAGTTTC	ChIP per1
7	2R	GCCGCACAATATGGATAAGG	ChIP per1
8	3F	CGCATCTTGCATTATTTCACC	ChIP per1
9	3R	AAACGATTGGGAAACACTCG	ChIP <i>per1</i> , 5'RACE
10	4F	GTCGCCAGATCGCTCTATTG	ChIP per1
11	4R	TGGGATGAATGTCGAAAACA	ChIP <i>per1</i> , 5'RACE
12	5F	GCGGTGGTGTTCCTACTGAT	ChIP, qRT-PCR
13	5R	GCACGAGGGAGAGACTTTTG	ChIP, qRT-PCR
14	6F	TGATTTAGACACGGGACTTCG	ChIP perl
15	6R	CAAAGAGATTGCCAAATCCA	ChIP perl
16	7F	CGTTGTAAGTTTATATGTTGAAGCA	ChIP perl
17	7R	TGCGAATGCAAGGCATAATA	ChIP perl
18	8F	ATATAATGTTGAGCTCCTTGGTTAGC	ChIP perl
19	8R	TGAGCTTGATAAGGCGGTCT	ChIP perl
20	Put4BF	AAAAGGCGTTGCAGTATGA	ChIP <i>put4</i>
21	Put4BR	TTTCTCCGTACTTCTTTTCAACG	ChIP <i>put4</i>
22	Adh1PF	CTTCCGCGTCTCATTGGT	ChIP adh1
23	Adh1PR	TTGCTTAAAGAAAAGCGAAGG	ChIP adh1
24	dhF	(20)	ChIP dh
25	dhR	(20)	ChIP dh
26	Put4F	ACATGATCGCTTGGGTTTTC	qRT-PCR put4
27	Put4R	TTAGGGATGTTACGCCTTGG	qRT-PCR put4
28	Adh1F	CGTATTGACTCTATCGAGGCTCTT	qRT-PCR adh1
29	Adh1R	CTTGGAAAGGTCCAAGACGA	qRT-PCR adh1
30	RT-PCR1	(50)	RT-PCR dh
31	RT-PCR2	(50)	RT-PCR dh
32	ACTF	(50)	RT-PCR act1
33	ACTR	(50)	RT-PCR act1
34	ORFT7		Northern <i>per1</i>
35		TAATACGACTCACTATAGGGAGAGCGGT	GGTGTTCCTACTGAT
36	ORFT3		Northern <i>per1</i>
37		AATTAACCCTCACTAAAGGGAGACCAAC	ACGAAGGGAGAGGTA
38	US2T7		Northern <i>per1</i>
39		TAATACGACTCACTATAGGGAGAGAGCCCA	ITCCCATTCAATTTT
40	US2T3		Northern <i>per1</i>
41		AATTAACCCTCACTAAAGGGAGAATGTT	TGAGCGCGTGTATGT
42	US1T7		Northern <i>per1</i>
43	-	TAATACGACTCACTATAGGGAGACTGCT	GCAAAACTTTGGTTG
44	US1T3		Northern <i>ner1</i>
45		AATTAACCCTCACTAAAGGGAGATTAGT	FACCCTATTTGGAAG
46	RpIAT7		Northern <i>rnl1002</i>
	r · - ·		r · · · · · · · · · · · · · · · · · · ·

	TAATACGACTCACTATAGGGAGAGCTC	GTATCTGTGCCAACAA
RplAT3		Northern <i>rpl1002</i>
1	AATTAACCCTCACTAAAGGGAGAGAGTAG	CAACCGTCGGGAATAA
RplBT7		Northern rpl1002
1	TAATACGACTCACTATAGGGAGATGGT	GTTGGATGAATCGGTA
RplBT3		Northern <i>rpl1002</i>
1	AATTAACCCTCACTAAAGGGAGACGTC	GAAGTAGATGCGGAG
Adh1T7		Northern <i>adh1</i>
	TAATACGACTCACTATAGGGAGATTCA	AGGTGACTGGCCTCTT
Adh1T3		Northern <i>adh1</i>
	AATTAACCCTCACTAAAGGGAGACAAG	GGCACGATAGCAAGTGA
Prw1FT7		in vitro translation
	GTGATAACTACTAATACGACTCACTAT	AGGGAGAATGGC
	TGTATCAGCTGTTC	
Prw1R	TTAACTTAAATATGCCGTAG	in vitro translation
Cha4FT7		in vitro translation
	GTGATAACTACTAATACGACTCACTAT	AGGGAGAAT
	GCAAATGAAACCCCGAC	
Cha4R	TTAATATTTTACATTGGGAG	in vitro translation
Hat1F	ATGAGTGCTG TTGATGAATG	pBS-hat1
Hat1R	TTAGGAAGAAGATTGAGCAAG	pBS-hat1
Mis16F	ATGTCAGAGGAAGTAGTCC	pBS-mis16
Mis16R	TTACTCCAGATCCCTAGGAG	pBS-mis16
Ago1F	GATGTCGTATAAACCAAGCTCAG	pBS-ago1
Ago1R	TTACATATACCACATCTTTGTTTTC	pBS-ago1
P14	ACCCCCGGGCATGTCTGTCACCCT	pGEX4T1-oca2
P15	GGACCCGGGATGCTTTGCAGGTGG	pGEX4T1-oca2
Hat1KanF		$hat I \Delta$
	GAGCTAGAAATCTATATAATAGTAAATA	ATTTTTTAATAA
	TAACAGGTGTAGCACGTGAAAGCGGAT	CCCCGGGTTAATTAA
Hat1KanR		$hat l \Delta$
	TAAATTTTGGAAAAAGCAGTTCATTATC	GAGGAATTGTTTGA
	ATTTTTATAAGGTGCCTTTGAATTCGAG	CTCGTTTAAAC

38 Kinase assays using recombinant proteins

For expression of Oca2-His₆ in Sf21 insect cells, a C-terminal His₆-tag was first
introduced into pGEX4T1-Oca2 by PCR with primers P16 and P17, followed by cloning
of the Oca2-His₆ ORF into pTriEx1 (Novagen) using *EcoRV* and *Sma*I sites. Sf21 insect

1 cells were transfected with pTriEx1-Oca2-His₆ according to manufacturers instructions 2 and the viral titer amplified over 3 rounds. To induce protein expression of Oca2-His6, 3 500 ml of Sf21 cells were transfected with 5 ml of viral supernatant and incubated for 4 4 days at 27°C. Cells were resuspended in lysis buffer (20mM Tris-HCl pH 8.0, 10% 5 glycerol, 200mM KCl, 0.01% NP40) containing complete protease inhibitor cocktail 6 (Roche) and lysed by sonication on ice. After centrifugation the supernatant was 7 incubated with Ni-NTA beads (Qiagen) for 1 hr at 4°C. Beads were washed twice with 20 8 bed volumes of lysis buffer, once with 5 bed volumes of lysis buffer containing 500mM 9 NaCl, once with 5 bed volumes of lysis buffer containing 20mM Imidazole and once with 10 5 bed volumes of lysis buffer. Oca2-His₆ was eluted with elution buffer (25mM HEPES) 11 pH 7.6, 10% glycerol, 100mM KCl, 250mM Imidazole). Purified recombinant proteins 12 were incubated in kinase buffer (25 mM HEPES pH 7.6, 10% glycerol, 30 mM KCl, 10 mM MgCl2, 1 mM DTT) containing 0.05 mM ATP and 0.5 µl ³²P-ATP for 1hr at 30°C. 13 14 Proteins were precipitated with TCA, resolved by SDS-PAGE and stained with 15 Coomassie brilliant Blue. Dried gels were subjected to autoradiography.

16

17 **PepChip Kinase microarray**

18 Two separate PepChip kinase arrays (Pepscan Systems) were incubated with 100ng 19 baculoexpressed Oca2-His₆ under *in vitro* phosphorylation conditions. Slides were 20 washed, dried and exposed on a phosphoimager screen. Both slides gave similar results 21 and the 30 strongest signals were analysed. Amino acid sequences of the corresponding 22 peptides were compared by eye to define an Oca2 phosphorylation consensus motif.

23

1 Supplementary References

2	S 1	Buker, S. M., Iida, T. , Bühler, M., Villén, J. Gygi, S.P., Nakayama, J
3		I. and D. Moazed. 2007. Two different Argonaute complexes are required
4		for siRNA generation and heterochromatin assembly in fission yeast.
5		Nature Struct Mol Biol 14 : 200 – 207.
6	S2	Irvine, D. V., M. Zaratiegui, N. H. Tolia, D. B. Goto, D. H. Chitwood,
7		M. W. Vaughn, L. Joshua-Tor, and R. A. Martienssen. 2006.
8		Argonaute slicing is required for heterochromatic silencing and spreading.
9		Science 313 :1134-7.
10	S 3	Win, T. Z., A. L. Stevenson, and S. W. Wang. 2006. Fission yeast Cid12
11		has dual functions in chromosome segregation and checkpoint control.
12		Mol Cell Biol 26: 4435-47.
13	S 4	Wiren, M., R. A. Silverstein, I. Sinha, J. Walfridsson, H. M. Lee, P.
14		Laurenson, L. Pillus, D. Robyr, M. Grunstein, and K. Ekwall. 2005.
15		Genomewide analysis of nucleosome density histone acetylation and
16		HDAC function in fission yeast. EMBO J 24:2906-18.
17		
18		
19	Supplem	entary Figure Legends

20 Figure S1

(A) Oca2 has kinase activity *in vitro*. 30ng of baculo-expressed Oca2-His₆ were
incubated either alone (lane 1) or with increasing amounts (200, 400, 800 ng) of MBP
(Upstate; lanes 2-4) and proteins were analysed on 18% SDS-PAGE. Lane 5 contains 800

1 ng of MBP alone. (B) Oca2 phosphorylates serines and threonines surrounded by basic 2 amino acids. A peptide micro-array containing 1400 peptides with known 3 phosphorylation sites was incubated with recombinant Oca2-His₆ under *in vitro* kinase 4 conditions followed by exposure on a phosphoimager screen. Amino acid sequence 5 analysis of phosphorylated peptides from two independent experiments gave a consensus 6 phosphorylation motif for Oca2 (shown below). (C) Oca2 is a phosphoprotein. Whole 7 cell extracts prepared from HA-oca2 cells was bound to HA-beads. After washing the 8 beads with lysis buffer proteins were incubated with alkaline phosphatase (AP, lane 3), 9 shrimp phosphatase (SP, lane 4) or buffer alone (mock, lane 2). Lane 1: untreated HA-10 oca2 whole cell extract. Proteins were eluted with SDS sample buffer and analysed by 11 Western blotting.

12

13 **Figure S2**

14 (A) $oca2\Delta$, $cha4\Delta$ and $ago1\Delta$ cells are rapamycin resistant. Wt, $oca2\Delta$, $cha4\Delta$ and $ago1\Delta$ 15 cells were grown in YE, diluted into EMM with ammonia containing 0.3 µM Rapamycin 16 or vehicle, and OD600 was measured at the indicated time points. (B) 5' extended 17 transcripts of *per1* are rapamycin sensitive. Northern Blot analysis of total RNA isolated 18 from wild type, $oca2\Delta$ and $cha4\Delta$ cells grown in EMM medium containing ammonia and 19 rapamycin (even numbered lanes) or vehicle alone (uneven numbered lanes). (A) 20 Hybridization was with probes against the ORF (Probe ORF, left) and upstream regions 21 of perl (probe US2, middle; probe US1 right). (B) Same Northern blot as in (A) 22 hybridized with a probe against *adh1* ORF.

23

Northern blot analysis of the ribosomal protein gene *rpl1002* located upstream of *per1*.
Total RNA was isolated from wt and *oca2 A* grown in EMM medium containing either
ammonia or proline. Northern blots were probed with single-stranded RNA probes
specific for sense transcripts mapping to the ORF (probe A) or immediately downstream
of *rpl1002* (Probe B) and to the ORF of *adh1*.

7

8 Figure S4

9 5'RACE of *per1* transcripts. Total RNA was reverse transcribed using random hexamers, 10 and cDNA was amplified with two nested PCR reactions. The *per1* locus is shown 11 schematically as a black line with the *per1* ORF indicated with a white arrow and the 12 positions of the ChIP primers and Northern probes indicated with black boxes. The 13 5'RACE products are shown as grey boxes with the nested 5' RACE primers indicated by 14 duplicated black arrows.

15

16 Figure S5

H3 ChIP of wt and *oca2*∆ cells grown in EMM medium containing either ammonia or
proline. The positions of the PCR primers across *per1* are indicated. ChIP signal values
are expressed as % of input DNA corrected for the no antibody control. The data shown
represent the average and SEM of three independent experiments.

21

1	Northern blot analysis of <i>perl</i> in strains lacking <i>snf22</i> . Total RNA was isolated from
2	$snf22\Delta$ cells grown in EMM medium containing either NH ₄ or proline and analysed
3	using single-stranded RNA probes mapping to the ORF of per1.

[K/R] X₂₋₃ [S/T] X [K/R]

B Northern Blots

 $\frac{snf22\Delta}{NH_4^+ Pro}$