# Distinct biological network properties between the targets of natural products and disease genes

Vlado Dančík<sup>‡</sup>, Kathleen Petri Seiler, Damian W. Young, Stuart L. Schreiber<sup>\*</sup>, Paul A. Clemons<sup>\*</sup> Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02143

**Supporting Information.** This document contains supplementary analyses referenced in the main narrative, including five Figures (**Supplementary Figures S1-S5**). This document also contains the details of Statistical Methods used in this study.

#### Supplementary Analyses

As control experiments described in the text, we analyzed STRING protein connections in three additional ways. First, we assessed the distribution of protein connectivities using natural product target proteins belonging to clusters of orthologous groups (COGs, http://www.ncbi.nlm.nih.gov/COG/) as defined by the STRING database<sup>1,2</sup> as network nodes. As with the primary analysis in the main narrative, we considered proteins with at least one connection among all STRING protein COGs, the natural product targets mapped to COGs, and heritable disease gene COGs. Second, we established protein connections using experimental evidence only. For both of these comparisons (Figures S1 and S2, respectively), the distributions and relative relationships of these groups to one another mimicked the outcomes using individual proteins and all types of STRING evidence (Figure 1 in the main narrative). We also considered STRING connections obtained by mining manually curated pathway databases. In this case, we observe closer correspondence between disease genes and all proteins, with natural products remaining more highly connected than either (Figure S3). To control for the possibility that GVKBio natural product targets are skewed by targets only weakly inhibited, we reanalyzed our results using only those interactions in GVKBio reported to be in the low nanomolar range or below (<  $10^{-7.5}$  M); these results look very similar to those using all GVKBio records (Figure S4). Finally, since a large fraction of drug targets are G protein-coupled receptors<sup>3</sup>, we looked at the overall connectivities of GPCRs in STRING by identifying the subset of STRING annotated as GPCRs using GPCRDB (http://www.gpcr.org/7tm/). Interestingly, this analysis shows that GPCRs are much less connected than all proteins in STRING (Figure S5).



**Supplementary Figure S1.** *Network connectivity of COGs.* Since many natural products target non-human proteins we also performed analysis with the COG (Clusters of Orthologous Groups of proteins, <u>http://www.ncbi.nlm.nih.gov/COG/</u>) network available from STRING. (a) Connectivity summary of different COGs: all COGs in STRING database (blue: n = 13,091; median = 5; mean = 18.4), COGs containing disease-associated proteins (green: n = 2,597; median = 17; mean = 35.7), COGs containing natural product targets (red: n = 819; median = 28; mean = 51.1). (b) Cumulative connectivity distributions illustrating differences.



**Supplementary Figure S2.** Network connectivity using experimental evidence only to make STRING connections. (a) Connectivity summary of different target groups: all proteins in STRING database (blue: n = 4,612; median = 2; mean = 3.6), disease-associated proteins (green: n = 1,469; median = 2; mean = 4.3), natural product targets (red: n = 499; median = 3; mean = 6.6). (b) Cumulative connectivity distributions illustrating differences.



**Supplementary Figure S3.** Network connectivity using curated pathway database evidence only to make STRING connections. (a) Connectivity summary of different target groups: all proteins in STRING database (blue: n = 4,949; median = 7; mean = 13.9), disease-associated proteins (green: n = 1,621; median = 7; mean = 13.5), natural product targets (red: n = 780; median = 10; mean = 18.7). (b) Cumulative connectivity distributions illustrating differences.



**Supplementary Figure S4.** Selection of only high-potency natural product-target interactions from GVKBio database. Cumulative connectivity distribution comparison of target list from interactions with  $EC_{50} < 10^{-7.5}$  *M* in GVKBio database (gold: n = 483; median = 11; mean = 22.5) with all proteins in STRING (blue; same as Figure 1b), natural product targets (red; same as Figure 1b), and human disease genes (green; same as Figure 1b).



**Supplementary Figure S5.** Analysis of connectivity of G protein-coupled receptors (GPCRs) in STRING database. Cumulative connectivity distribution comparison of proteins in STRING identified as GPCRs by GPCRDB (<u>http://www.gpcr.org/7tm/;</u> gold: n = 233; median = 3; mean = 5.7) with all proteins in STRING (blue; same as Figure 1b).

#### Statistical Methods

We used statistical analysis to assess the significance of the differences between the connectivity distributions of natural product targets, disease genes, and all proteins in the STRING network. The connectivity distributions are not normally distributed as is illustrated by the differences between the mean and median values (Table 1) and are typically modeled by a power-law distribution<sup>4</sup>. Due to lack of normality, we used a nonparametric Kolmogorov-Smirnov goodness-of-fit test as implemented in a MATLAB statistical toolbox. Most comparisons were significant at significance level  $\alpha = 0.05$  (Table 2). No adjustments for multiple testing were applied.

| Network      | Source            | number | mean | median | std dev |
|--------------|-------------------|--------|------|--------|---------|
| STRING       | STRING proteins   | 8799   | 11.7 | 5      | 19.6    |
| STRING       | Disease genes     | 2681   | 14.0 | 6      | 22.3    |
| STRING       | NP targets        | 946    | 22.5 | 11     | 33.4    |
| STRING       | Manually selected | 38     | 48.2 | 32.5   | 44.5    |
| STRING       | ChEMBL*           | 729    | 17.4 | 8      | 24.8    |
| STRING       | DrugBank**        | 731    | 14.9 | 7      | 21.6    |
| STRING       | Low nM NP targets | 483    | 22.5 | 11     | 32.7    |
| STRING       | GPCRs             | 233    | 5.7  | 3      | 6.6     |
| COG          | STRING            | 13091  | 18.4 | 5      | 34.1    |
| COG          | Disease genes     | 2597   | 35.7 | 17     | 53.5    |
| COG          | NP targets        | 819    | 51.1 | 28     | 70.2    |
| Experimental | STRING            | 4612   | 3.6  | 2      | 5.5     |
| Experimental | Disease genes     | 1469   | 4.3  | 2      | 7.3     |
| Experimental | NP targets        | 499    | 6.6  | 3      | 11.6    |
| Pathways     | STRING            | 4949   | 13.9 | 7      | 19.1    |
| Pathways     | Disease genes     | 1621   | 13.5 | 7      | 17.7    |
| Pathways     | NP targets        | 780    | 18.7 | 10     | 24.4    |

**Table 1.** The number of proteins, mean, median, and standard deviation of connectivities. \*ChEMBL – targets of bioactive molecules from ChEMBL excluding NP targets. \*\*DrugBank – targets of approved molecules from DrugBank excluding NP targets.

| Figure | Comparison      |                   | Network      | Two-sided<br>p-value | One-sided<br>p-value |
|--------|-----------------|-------------------|--------------|----------------------|----------------------|
| F1     | STRING proteins | Disease genes     | STRING       | 2.78E-15             | 1.39E-15             |
| F1     | STRING proteins | NP targets        | STRING       | 1.91E-39             | 9.53E-40             |
| F1     | Disease genes   | NP targets        | STRING       | 2.57E-15             | 1.28E-15             |
| F2     | NP targets      | Manually selected | STRING       | 7.85E-06             | 3.93E-06             |
| F3     | Disease genes   | ChEMBL*           | STRING       | 0.00016816           | 8.41E-05             |
| F3     | ChEMBL*         | NP targets        | STRING       | 0.014087             | 0.0070437            |
| F4     | Disease genes   | DrugBank**        | STRING       | 0.18604              | 0.093097             |
| F4     | DrugBank**      | NP targets        | STRING       | 1.92E-05             | 9.58E-06             |
| S1     | STRING proteins | Disease genes     | COG          | 1.42E-149            | 7.11E-150            |
| S1     | STRING proteins | NP targets        | COG          | 8.99E-106            | 4.50E-106            |
| S1     | Disease genes   | NP targets        | COG          | 3.54E-13             | 1.77E-13             |
| S2     | STRING proteins | Disease genes     | Experimental | 0.00025319           | 0.0001266            |
| S2     | STRING proteins | NP targets        | Experimental | 5.07E-08             | 2.53E-08             |
| S2     | Disease genes   | NP targets        | Experimental | 0.0051732            | 0.0025866            |
| S3     | STRING proteins | Disease genes     | Pathways     | 0.57661              | 0.29596              |
| S3     | STRING proteins | NP targets        | Pathways     | 1.88E-10             | 9.39E-11             |
| S3     | Disease genes   | NP targets        | Pathways     | 4.64E-07             | 2.32E-07             |
| S4     | STRING proteins | Low nM NP targets | STRING       | 9.80E-21             | 4.90E-21             |
| S4     | Disease genes   | Low nM NP targets | STRING       | 2.93E-09             | 1.47E-09             |
| S4     | NP targets      | Low nM NP targets | STRING       | 1                    | 0.89336              |
| S5     | GPCRs           | STRING proteins   | STRING       | 1.88E-05             | 9.38E-06             |

**Table 2.** P-values for Kolmogorov-Smirnov tests for two samples (<sup>5</sup>, Test 13). Three comparisons that fail to achieve statistical significance at level  $\alpha = 0.05$  are italicized. \*ChEMBL – targets of bioactive molecules from ChEMBL excluding NP targets. \*\*DrugBank – targets of approved molecules from DrugBank excluding NP targets.

## Manually curated compounds

As described in the text, we hand-curated 76 natural products (<sup>6-10</sup> and references therein) and mapped their targets to STRING (compounds highlighted in yellow are depicted in Figure 2b).

| CompoundName      | ProteinTarget(s)                       | Gene   | Ensembl         | Connections |
|-------------------|----------------------------------------|--------|-----------------|-------------|
| verrucarin A      | MAP kinase inhibitor                   | MAPK1  | ENSP00000215832 | 182         |
| butyrolactone-I   | Cdk1/CycB                              | CDC2   | ENSP00000362917 | 144         |
| hymenialdisine    | Cdk1/CycB, CDK5/p25, GSK3B, Mek1       | CDC2   | ENSP00000362917 | 144         |
| oleanolic acid    | NF-KB, STAT3, STAT5 inhibition         | STAT3  | ENSP00000264657 | 144         |
| aparatoxin A      | JAK/STAT                               | JAK1   | ENSP00000294423 | 127         |
| oleanolic acid    | NF-KB, STAT3, STAT5 inhibition         | NFKB1  | ENSP00000226574 | 111         |
| bryostatin        | protein kinase C inhibtion             | PRKCA  | ENSP00000284384 | 86          |
| genistein         | BCL-2                                  | PRKCA  | ENSP00000284384 | 86          |
| ingenol           | protein kinase C activation            | PRKCA  | ENSP00000284384 | 86          |
| rebeccamycin      | topisomerase I and II                  | PRKCA  | ENSP00000284384 | 86          |
| staurosporine     | FLT3 inhibition                        | PRKCA  | ENSP00000284384 | 86          |
| variolin B        | CDK inhibitor                          | CDKN1A | ENSP00000362816 | 82          |
| cryptophycins     | 80S ribosome and 60S ribosomal subunit | RPL7   | ENSP00000339795 | 69          |
| butyrolactone-I   | Cdk1/CycB                              | CCNB1  | ENSP00000370233 | 66          |
| hymenialdisine    | Cdk1/CycB, CDK5/p25, GSK3B, Mek1       | CCNB1  | ENSP00000370233 | 66          |
| hymenialdisine    | Cdk1/CycB, CDK5/p25, GSK3B, Mek1       | MAP2K1 | ENSP00000302486 | 63          |
| oleanolic acid    | NF-KB, STAT3, STAT5 inhibition         | STAT5B | ENSP00000293328 | 62          |
| FK506             | FKBP12/calcineurin                     | MTOR   | ENSP00000354587 | 61          |
| rapamycin         |                                        | MTOR   | ENSP00000354587 | 61          |
| didemnin B        |                                        | EIF4A1 | ENSP00000369881 | 60          |
| plitidepsin       | VEGF and VEGF1 inhibitor               | EIF4A1 | ENSP00000369881 | 60          |
| epoxomycin        | proteasome                             | PSMD1  | ENSP00000309474 | 56          |
| fellutamide B     | proteasome                             | PSMD1  | ENSP00000309474 | 56          |
| lactacystin       | proteasome                             | PSMD1  | ENSP00000309474 | 56          |
| salinosporamide A | proteasome inhibitor                   | PSMD1  | ENSP00000309474 | 56          |
| hymenialdisine    | Cdk1/CycB, CDK5/p25, GSK3B, Mek1       | GSK3B  | ENSP00000324806 | 53          |
| apicidin          | HDAC inhibition                        | HDAC3  | ENSP00000302967 | 52          |
| butyric acid      | HDAC inhibition                        | HDAC3  | ENSP00000302967 | 52          |
| FK228             | HDAC inhibition                        | HDAC3  | ENSP00000302967 | 52          |
| psammaplin A      | HDAC inhibition                        | HDAC3  | ENSP00000302967 | 52          |
| trapoxin          | HDAC inhibition                        | HDAC3  | ENSP00000302967 | 52          |
| trichostatin      | HDAC inhibition                        | HDAC3  | ENSP00000302967 | 52          |
| dictyodendrin A   | telomerase                             | TERT   | ENSP00000309572 | 50          |
| dehydroaltenusin  | mammalian DNA polymerase alpha         | POLA1  | ENSP00000368358 | 35          |
| caliculin         |                                        | PPP3CA | ENSP00000320580 | 33          |
| cyclosporin       | cyclophilin/calcineurin                | PPP3CA | ENSP00000320580 | 33          |
| FK506             | FKBP12/calcineurin                     | PPP3CA | ENSP00000320580 | 33          |
| fostriecin        | PP2A and PP4                           | PPP2CA | ENSP00000231504 | 32          |
| okadaic acid      | PP1 and PP2A                           | PPP2CA | ENSP00000231504 | 32          |

| 10-deacetyl baccatin III | tubulin stabilization                  | TUBB1  | ENSP00000217133 | 29 |
|--------------------------|----------------------------------------|--------|-----------------|----|
| colchicine               | tubulin binder                         | TUBB1  | ENSP00000217133 | 29 |
| combretastatin A-4       | tubulin binding                        | TUBB1  | ENSP00000217133 | 29 |
| curacin A                | tubulin                                | TUBB1  | ENSP00000217133 | 29 |
| cytochalasin A           | tubulin assembly inhibition            | TUBB1  | ENSP00000217133 | 29 |
| discodermolide           | tubulin assembly inhibition            | TUBB1  | ENSP00000217133 | 29 |
| dolastatin               | tubulin assembly inhibition            | TUBB1  | ENSP00000217133 | 29 |
| epothilone A             | alpha-beta tubulin                     | TUBB1  | ENSP00000217133 | 29 |
| halichondrin B           | tubulin assembly inhibition            | TUBB1  | ENSP00000217133 | 29 |
| hemiasterlin             | tubulin assembly inhibition            | TUBB1  | ENSP00000217133 | 29 |
| noscapine                | tubulin binding                        | TUBB1  | ENSP00000217133 | 29 |
| paclitaxel               | tubulin stabilization                  | TUBB1  | ENSP00000217133 | 29 |
| spongistatin             | tubulin binder                         | TUBB1  | ENSP00000217133 | 29 |
| taxol                    | alpha-beta tubulin                     | TUBB1  | ENSP00000217133 | 29 |
| vinblastine              | tubulin binding                        | TUBB1  | ENSP00000217133 | 29 |
| vincristine              |                                        | TUBB1  | ENSP00000217133 | 29 |
| hymenialdisine           | Cdk1/CycB, CDK5/p25, GSK3B, Mek1       | CDK5   | ENSP00000297518 | 28 |
| spisulosine              | GTP-binding protein RHO                | RHO    | ENSP00000296271 | 24 |
| ZM447439                 | aurora kinase                          | AURKA  | ENSP00000321591 | 24 |
| jasplakinolide           | actin                                  | ACTB   | ENSP00000349960 | 22 |
| latrunculin              |                                        | ACTB   | ENSP00000349960 | 22 |
| phallodidin              | actin                                  | ACTB   | ENSP00000349960 | 22 |
| cyclopamine              | SMO                                    | SMO    | ENSP00000249373 | 21 |
| avrainvillamide          | nucleophosmin                          | NPM1   | ENSP00000296930 | 19 |
| morphine                 | mu opioid receptor                     | OPRM1  | ENSP00000229768 | 18 |
| camptothecin             | DNA topoisomerase                      | TOP1   | ENSP00000354522 | 17 |
| epipodophyllotoxin       | topisomerase I and II                  | TOP1   | ENSP00000354522 | 17 |
| rebeccamycin             | topisomerase I and II                  | TOP1   | ENSP00000354522 | 17 |
| tryprostatin             | Map2                                   | MAP2   | ENSP00000353508 | 16 |
| pladieolide B            | SFB3 subunit 3                         | SF3B3  | ENSP00000305790 | 15 |
| nicotine                 | nicotinic acetylcholine receptor       | CHRNA7 | ENSP00000303727 | 11 |
| daidzein                 | NADH oxidase(tNOX inhibition)          | NOX1   | ENSP00000362057 | 8  |
| cyclosporin              | cyclophilin/calcineurin                | PPIA   | ENSP00000348240 | 3  |
| myriocin                 |                                        | SPTLC1 | ENSP00000262554 | 3  |
| fumagillin               | METAP2 inhibition                      | METAP2 | ENSP00000325312 | 2  |
| cryptophycins            | 80S ribosome and 60S ribosomal subunit | EIF2A  | ENSP00000273435 | 1  |
| penicillin               | beta-lactamase                         | LACTB  | ENSP00000261893 | 1  |

### References

(1) Jensen, L. J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; von Mering, C. *Nucleic Acids Res* **2009**, *37*, D412-6.

(2) von Mering, C.; Jensen, L. J.; Snel, B.; Hooper, S. D.; Krupp, M.; Foglierini, M.; Jouffre, N.; Huynen, M. A.; Bork, P. *Nucleic Acids Res* **2005**, *33*, D433-7.

(3) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. *Nat Rev Drug Discov* **2006**, *5*, 993-6.

(4) Barabasi, A. L.; Albert, R. *Science* **1999**, *286*, 509-12.

(5) Sheshkin, D. J. *Handbook of Parametric and Nonparametric Statistical Procedures*; 2 ed.; Chapman & Hall/CRC, 2004.

(6) Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. *Nat Rev Drug Discov* **2009**, *8*, 69-85.

(7) Feldman, I.; Rzhetsky, A.; Vitkup, D. *Proc Natl Acad Sci U S A* **2008**, *105*, 4323-8.

(8) Newman, D. J.; Cragg, G. M. *Curr Drug Targets* **2006**, *7*, 279-304.

(9) Nagle, A.; Hur, W.; Gray, N. S. *Curr Drug Targets* **2006**, *7*, 305-26.

(10) Newman, D. J.; Cragg, G. M.; Holbeck, S.; Sausville, E. A. *Curr Cancer Drug Targets* **2002**, *2*, 279-308.