Supporting Information

α,β -Methylene-2'-deoxynucleoside 5'-triphosphates as non-cleavable substrates for DNA polymerases: Isolation, characterization, and stability studies of novel 2'-deoxycyclonucleosides, 3,5'-anhydro-dG and 2,5'-anhydro-dT

Fengting Liang, Nidhi Jain, Troy Hutchens, David D. Shock, William A. Beard, Samuel H. Wilson, M. Paul Chiarelli, and Bongsup P. Cho*

Figure S1: 1H NMR spectrum of 5',3'-O-bis-tert-butyl-dimethylsilyl-dG recorded in DMSO-d6

Figure S1: 1H NMR spectrum of 5',3'-O-bis-tert-butyl-dimethylsilyl-dG recorded in DMSO-d6

Figure S3: 1H NMR spectrum of 5'-*O*-Tosyl-3'-*O*-tert-butyl-dimethylsilyl-dG recorded in DMSO-d6

Figure S4: 1H NMR spectrum of 5'-O-Tosyl-dG (4) recorded in DMSO-d6

Figure S5: 31P NMR spectrum of α , β -methylene-dATP (12) recorded in D2O.

Figure S6: 31P NMR spectrum of α , β -methylene-dCTP (13) recorded in D2O.

Figure S7: 31P NMR spectrum of α , β -methylene-dGTP (15) recorded in D2O.

Figure S8: 31P NMR spectrum of α , β -methylene-dTTP (14) recorded in D2O.

Figure S9: Negative ion ESI-LTQ-FTMS high resolution mass spectrum of α , β -methylene-dGTP (15). The theoretical mass of the (M-H)⁻ ion is 504.0087. The measured mass is 504.0092.

Figure S10: Negative ion ESI-LTQ-FTMS high resolution mass spectrum of α , β -methylene-dCTP (**13**). The theoretical mass of the (M-H)⁻ ion is 464.0025. The measured mass is 464.0032.

Figure S11: Negative ion ESI-LTQ-FTMS high resolution mass spectrum of α , β -methylenedTTP (**14**). The theoretical mass of the (M-H)⁻ ion is 479.0022. The measured mass is 479.0028.

Figure S12: Negative ion ESI-LTQ-FTMS high resolution mass spectrum of α , β -methylenedATP(**12**). The theoretical mass of the (M-H)⁻ ion is 488.0137. The measured mass is 488.0143.

Figure S13: 1H NMR spectrum of cyclo-dG (16) recorded in (a) DMSO-d6 and with D2O added.

Figure S14: 1H NMR spectrum of cyclo-dT (17) recorded in D2O.

Figure S15. Comparison of 1H NMR spectra of α , β -methylene-dGDP (11) and cyclo-dG (16) recorded in DMSO-d6.

Figure S16. TOCSY 1H NMR spectrum of cyclo-dG (16) recorded in DMSO-d6.

Figure S17. NOSEY 1H NMR spectrum of cyclo-dT(**17**) recorded in DMSO-d6. The cross-peaks circled in red indicate the close proximity of the H6 and H1' protons (i.e., *syn*-glycosidyl conformation).

Figure S18. Comparison of 13C NMR of dT and Cyclo-dT (17) recorded in DMSO-d6.

Figure S19. Comparison of UV of (a) α,β -methylene-dGDP (11)(green) and cyclo-dG (16) (blue); (b) α,β -methylene-dTDP (10)(green) and cyclo-dT (17)(blue).

Figure S20. The CD spectra of cyclo-dG (**16**) as a function of time (0 - 6 h) every hour at 90 °C in comparison with dG (dotted blue lines).

Figure S21. The CD spectra of cyclo-dT (**17**) as a function of time (0- 6 h) at 90 °C in comparison with dT (dotted blue lines).

Figure S22. pH dependence UV spectra of dG.

- Figure S23. pH dependence UV spectra of cyclo-dG (16).
- Figure S24. pH dependence CD spectra of cyclo-dG (16).
- Figure S25. pH dependence UV spectra of dT.
- Figure S26. pH dependence UV spectra of cyclo-dT(17).
- Figure S27. pH dependence CD spectra of 18.
- Figure S28. pH dependence UV spectra of 18.
- Figure S29. 1H NMR spectrum of 18 in DMSO-d6.
- Figure S30. 1H NMR spectrum of 18 in DMSO-d6 + D2O.
- Figure S31. 13C NMR spectrum of 18 in D2O.
- Figure S32. pH dependence CD spectra of cyclo-dX (19).
- Figure S33. pH dependence UV spectra of cyclo-dX (19).
- Figure S34. 1H NMR spectrum of cyclo-dX (19) in DMSO-d6.
- Figure S36. 13C NMR spectrum of cyclo-dX (19) in DMSO-d6.
- Figure S37. NOESY NMR spectrum of cyclo-dX (19) in DMSO-d6.

Figure S38. Cyclo-dX (19). The product ion spectrum of the $(M+H)^+$ ion acquired with LTQ-FTMS.

Figure S39. Comparison of UV of cyclo-dG (blue), acid intermediate **18** (pink), and cyclo-dX (**19**)(green).

Figure S1: ¹H NMR spectrum of 5',3'-O-bis-tert-butyl-dimethylsilyl-dG recorded in DMSO-d6

Figure S2: ¹H NMR spectrum of 3'-O-tert-butyl-dimethylsilyl-dG recorded in DMSO-d6

Figure S3: ¹H NMR spectrum of 5'-O-Tosyl-3'-O-tert-butyl-dimethylsilyl-dG recorded in DMSO-d6

Figure S4: ¹H NMR spectrum of 5'-O-Tosyl-dG (4) recorded in DMSO-d6

 $P\alpha$ $P\gamma$ $P\beta$ 25 15 -10 20 10 5 -5 0 ppmГ О \subset \subset

Figure S5: ³¹P NMR spectrum of α , β -methylene-dATP (12) recorded in D₂O.

Figure S8: ³¹P NMR spectrum of α , β -methylene-dTTP (**14**) recorded in D₂O.

Figure S9: Negative ion ESI-LTQ-FTMS high resolution mass spectrum of α , β -methylene-dGTP (**15**). The theoretical mass of the (M-H)⁻ ion is 504.0087. The measured mass is 504.0092

Figure S10: Negative ion ESI-LTQ-FTMS high resolution mass spectrum of α , β -methylene-dCTP (**13**). The theoretical mass of the (M-H)⁻ ion is 464.0025. The measured mass is 464.0032.

Figure S11: Negative ion ESI-LTQ-FTMS high resolution mass spectrum of α , β -methylene-dTTP (**14**). The theoretical mass of the (M-H)⁻ ion is 479.0022. The measured mass is 479.0028.

Figure S12: Negative ion ESI-LTQ-FTMS high resolution mass spectrum of α , β -methylene-dATP(**12**). The theoretical mass of the (M-H)⁻ ion is 488.0137. The measured mass is 488.0143.

Figure S13: ¹H NMR spectrum of cyclo-dG (16) recorded in (a) DMSO-d6 and with D₂O added.

Figure S14: ¹H NMR spectrum of cyclo-dT (17) recorded in D_2O .

 α,β -methylene-GDP (11)

Figure S15. Comparison of 1H NMR spectra of α , β -methylene-dGDP (**11**) and cyclo-dG (**16**) recorded in DMSO-d6.

Figure S16. TOCSY ¹H NMR spectrum of cyclo-dG (16) recorded in DMSO-d6.

Figure S17. NOSEY ¹H NMR spectrum of cyclo-dT(**17**) recorded in DMSO-d₆. The crosspeaks circled in red indicate the close proximity of the H6 and H1' protons (i.e., *syn*-glycosidyl conformation).

Figure S18. Comparison of ¹³C NMR of dT and cyclo-dT (17) recorded in DMSO-d₆.

Figure S19. Comparison of UV of (a) α,β -methylene-dGDP (11)(green) and cyclo-dG (16) (blue); (b) α,β -methylene-dTDP (10)(green) and cyclo-dT (17)(blue).

Figure S21. The CD spectra of cyclo-dT (**17**) as a function of time (0- 6 h) at 90 $^{\circ}$ C in comparison with dT (dotted blue lines).

Figure S22. pH dependence UV spectra of dG.

Figure S23. pH dependence UV spectra of cyclo-dG (16).

Figure S29. ¹H NMR spectrum of 18 in DMSO-d6.

Figure S30. ¹H NMR spectrum of **18** in DMSO-d6 + D_2O .

— 140.19

Figure S31. ¹³C NMR spectrum of 18 in D₂O.

Figure S34. ¹H NMR spectrum of cyclo-dX (19) in DMSO-d₆.

Figure S35. ¹H NMR spectrum of cyclo-dX (**19**) in DMSO-d6 + D_2O

Figure S36. ¹³C NMR spectrum of cyclo-dX (19) in DMSO-d6.

Figure S37. NOESY NMR spectrum of cyclo-dX (19) in DMSO-d6.

Figure S38. Cyclo-dX (**19**). The product ion spectrum of the $(M+H)^+$ ion acquired with LTQ-FTMS.

Figure S39. Comparison of UV of cyclo-dG (blue), acid intermediate **18** (pink), and cyclo-dX (**19**)(green).