Supplementary Materials for

Identification and validation of genes affecting aortic lesions in mice

Xia Yang^{1,2*}, Larry Peterson³, Rolf Thieringer⁴, Joshua L. Deignan⁵, Xuping Wang⁶, Jun Zhu^{1,2}, Susanna Wang⁶, Hua Zhong^{1,2}, Serguei Stepaniants^{1,7}, John Beaulaurier¹, I-Ming Wang¹, Ray Rosa³, Anne-Marie Cumiskey³, Jane Ming-Juan Luo⁸, Qi Luo⁸, Kashmira Shah⁸, Jianying Xiao⁸, David Nickle¹, Andrew Plump⁸, Eric E. Schadt^{1,9}, Aldons J. Lusis⁶, Pek Yee Lum^{1,7*}

¹Department of Molecular Profiling, Rosetta Inpharmactics LLC, a wholly owned subsidiary of Merck & Co, Inc. Seattle, WA, USA; ²Sage Bionetworks, Seattle, WA, USA; ³Department of Pharmacology, Merck & Co, Inc. Rahway, NJ, USA; ⁴Department of External Scientific Affair, Merck & Co. Inc. Rahway, NJ, USA; ⁵Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA; ⁶Departments of Human Genetics; Medicine; and Microbiology, Molecular Genetics and Immunology, University of California, Los Angeles, CA, USA; ⁷iPierian Inc., San Francisco, CA, USA; ⁸Department of Cardiovascular Disease, Merck & Co, Inc. Rahway, NJ, USA; ⁹Pacific Biosciences, San Francisco, CA, USA.

*Co-corresponding authors:

Pek Yee Lum, Ph.D.

Xia Yang, Ph.D.

Rosetta Inpharmatics LLC.,

A wholly owned subsidiary of Merck & Co., Inc.

401 Terry Ave N

Seattle, WA 98109

Emails: pek.lum@ipierian.com

xia.yang@sagebase.org

Phone: 206-667-2118

Fax: 206-667-2062

Supplementary Materials

Supplementary Tables

Supplementary Table 1-10 are supplied as a separate excel workbook.

Supplementary Figure Legends

Supplementary Figure 1. Comparison between the aortic lesion causal genes and plaque progression signatures. The distribution of the plaque progression signature genes (red dots) among the aortic lesion causal genes (black dots) from BxH *Apoe-/-* F2 mice is plotted with the causality strength of each gene (causal trait r^2) on the X-axis and the trait-gene correlation strength (TGC r^2) on the Y-axis. Upper panel shows the overlap of aortic lesion causal genes from adipose tissue of the F2 cross with plaque progression signature from *Apoe-/-* (left), *Ldlr-/-* hu*CETP* tg (middle), and both (right) mouse models. Lower panel shows the overlap of aortic lesion signature from *Apoe-/-* (left), *Ldlr-/-* hu*CETP* tg (middle), and both (right) mouse models. Lower panel shows the overlap of aortic lesion signature from *Apoe-/-* (left), *Ldlr-/-* hu*CETP* tg (middle), and both (right) mouse models. Lower panel shows the overlap of aortic lesion signature from *Apoe-/-* (left), *Ldlr-/-* hu*CETP* tg (middle), and both (right) mouse models. Lower panel shows the overlap of aortic lesion causal genes from liver tissue of the F2 cross with plaque progression signature from *Apoe-/-* (left), *Ldlr-/-* hu*CETP* tg (middle), and both (right) mouse models.

Supplementary Figures

Supplementary Figure 1. Comparison between the aortic lesion causal genes and plaque progression signatures.

