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Inventory

Figure S1. This figure relates to Figure 1 in the main text and shows the schematics of our approach.

Figure S2. This figure relates to Figure 2 in the main text and contains supplemental results discussed in
the main text regarding the associations discovered in Figure 2.

Figure S3. This figure relates to Figure 4 in the main text and shows the expression level of Spl and
NF-Y and their target genes in more detail as opposed to the average values presented if Figure 4B.

Table S1. This table relates to Figure 5 in the main text and lists the tumor vs. normal gene expression
datasets compiled for this study.

Figure S4. This figure relates to Figure 6 in the main text and contains three parts. Figure S4A shows
the cancer regulatory map discussed in the main text. The conservation scores of these elements are
shown in Figure S4B. Figure S4C is the complete association map from which Figure 6 was extracted as
an exemplary subset.

Table S2. This table relates to Figure 6 in the main text and lists a number of significant associations
between putative regulatory elements and pathways as reported in Figure 6.

Figure S5. This figure relates to Figure 7 in the main text and shows additional analyses performed on
the gene expression profiles obtained from the TF knock-down and decoy vs. scrambles experiments.
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Cancer Regulatory Motifs

Bladder Carcinoma

K]
H

=

096

Lo

BLvs. DLBCL

K]
2

Lo

£ k. »

Lo

Figure 4 (A, B)



(Neg)

plex

Lmo2_com|

5

PPARalpha-RXR-alpha

Figure 4 (C)

sodium ion transport

voltage-gated potassium channel activity
potassium ion transport

cell aging

Rho protein signal transduction

neﬁative regulation of progression through cell cycle
antioxidant activity

NADH dehydrogénase activity

energy derivation by oxidation of organic compounds
glycolysis

alcohol catabolic process

fatty acid metabolic process

cofactor biosynthetic process

amino acid metabolic process

serine-type endopeptidase activity
cell-cell'adhesion

copper ion binding

microtubule organizing center

nucleotide metabolic process

tumor necrosis factor receptor binding

ER to Golgi vesicle-mediated transport
phosphoinositide-mediated signaling

mitotic cell cycle

DNA replication

DNA repair

chromatin assembly

chromosome orgariization and biogenesis
ATP-dependent helicase activity
ubiquitin-dependent protein catabolic process
mRNA processing

nucleotidyltransferase activity
methyltransferase activity

protein foldin,

chromatin modification

sterol biosynthetic process

response to virus

regulation of cell froliferation

phospholipase A2 inhibitor activity

positive regulation of cell proliferation
negative regulation of apoptosis

cell motility

antigen grocessinﬁ]ar\d presentation

I-kappaB kinase / F-kazg aB cascade
hematopoietin/IFN (D200-d) cytokine receptor activity
inflammatory response

lysosome

cell migration

induction of apoptosis

angiogenesis

actin cytoskeleton

actin binding

Wnt receptor signalin pathway
platelet-derived growth factor receptor activity
transmembrane receptor protein tyrosine kinase activity
vascular endothelial growth factor receptor activity
insulin-like growth factor binding

anion transport

proteinaceous extracellular matrix



9,
g, < S N h 9
, s ® - M o @, >t
z = Eas a, = =] !
20, 2] 1 ' 20, a @ = 22 B
% % o, =
I} 3] © 3} 9]
o, 3 8 % oy, 8§ & B
o > & = 2 * “ 8§ F N 2
<y 3 g B3 ©uy 3 2 %y °
ooJ O < O ‘ eow o 13} z .
g, 2 z.
s, ALW@ =3 = — WA§0® o 0 o .WWA&
©2o w5 S S 2 erg w0, S 3 S S8, %o, S
coﬁ - - o %, - o — ? o °
&, 32 >
2 &, 2
O Vs, 2
T S, o I o
RS Q 2o
2 o
s, wwv@ adww
O ™ > > “Sog 1 1 [ w@oQ -
s,
S, s,
wi@a ° ° ° qwﬂﬂw o o wzwem
%0, < 3 g %, 2 g 0 o
S S S T3S ~ S Fo, o
- — — S ~ S N
S,
2, 9,
g _ N < - oy, © © ~ 20,
> cN 2 O, -
n © o = o * o o N
< — — < o @ ©
‘s 12
22 3 (
2 ~ - ~ 2 S,
v z 3 g S o 2 g g ") S
. . . N‘ < 4 4 .Nye o
o o o o o o N
o
QONW ¢0~
&, 2
S &,
o N N N ) . . N
4 n n 0 °r 0 n 0
s <5 s 16 <os 5
<«: "ot et = == ==
— =9 —r - | — |
s <=t ] - | — —_
v — —_ v = BT
< UM -|w c.lm — —f <Ot
= —_— == =: : —:
< s s
“an” T Yew® a0 e “aw®
=
. = s
. z =}
=
. 0 1
B o 5
5] 5 S
(%]
e =
= =<
=< <
— Vl
=< =
—]
. = 4
.
. I

9€8°T Z8E°0-

o
—

€25°0 L¥8°0-

€G9°0 TLL"O-

S o
| —

10

o
—
I

Figure S5



L egends

Figure S1. iPAGE and PRMG Schematics, related to Figure 1. (A) Two exemplary expression profiles are
shown: discreteg(@. cluster indices from co-expression clustering) aadtinuous €.g. log of fold change in
expression level in the tumor sample compared tonab). Mutual information is then used to assesslével
by which given pathway profiles are informativetbése expression profileB) Two exemplary expression
profiles are shown: discrete.d. cluster indices from co-expression clustering) eodtinuous €.g. log of fold
change in expression level in the tumor sample @vetpto normal). Mutual information is then useds$sess
the level by which given pathway profiles are imfiative of these expression profiles.

Figure S2. Measuring co-regulation in the identified associations, related to Figure 2. (A) The regulatory
interaction matrix for the bladder carcinormia-regulatory elementdB) 1000 gene pairs are selected from
bladder carcinoma dataset (Dyrskjot et al., 2004) the distribution of their Pearson correlatioeficients is
plotted. The background set includes all the genethe dataset; whereas ‘EIk1’ is limited to thenge
harboring Elkl motifs in their upstream sequen&milarly, TAGATGT plot represents the genes hairpr
[ACU]JUJACU]GIACGJUGU (a novel 3' UTR element). We dve also included this distribution for the
simultaneous occurrence of these two motifs. Sihgildhe distribution of R-values are shown for El&nd
ACGTCGG (a upstream element [ACGJACGTI[CT][CGT][AG]J5T]) and their simultaneous presen(g)
Shown are the expression of EIk1l, TFDP1 and AhRsacthe bladder carcinoma samples and correlatiths
target genes within their associated pathways. &tpression of each pathway is calculated as theagee
normalized expression of the genes listed. A rajpagest is then used to calculate the correlataefficients
and their associatqavalues.

Figure S3. The expression of key transcription factors and their targetsin BL vs. DLBCL dataset, related

to Figure 4. The normalized expression of NF-Y and Spl are shaenoss the BL vs. DLBCL samples.
Similarly, the expression of the target genes #irtassociated pathways is also shown along withvamnage
normalized expression for each pathway and itsetaiion with the upstream transcription factor.

Figure $4. ldentifying the cisregulatory elements that are informative of the expression patterns in
various cancer datasets and their associations with known and putative downstream pathways, related to
Figure 6. (A) Cancer regulatory map. The level of significance by which the genes hergpa given putative
cisregulatory element are up or down regulated isatiegh here. This matrix is formatted to includeyotile
known motifs and those that are significantly agged with more than 3 canceré) Network-level
conservation scores. This figure shows our discovered motifs and tiheitwork-level conservation scores with
respect to the chicken genome (Elemento and Tawa2605). Values range from 0 to 1, with 1 beingsimo
conserved(C) The complete cancer pathway-regulatory interaction map. Figure 6 in the main paper is a
summarized version of this matrix.

Figure S5. FIRE analysis of experimentally tested associations, related to Figure 7. (A) The motifs that are
most informative of the decoy AAAA[ATG]TT vs scraedd microarray experimen{B) Knocking down Elk1
results in the upregulation of genes harboring &1 and MEF-2 binding site¢C) Knocking down NFYA
results in upregulation of genes harboring the NB#\ling site.

Table S1. The list, tissue and references of the cancer gene expression studies used to compile our initial dataset,
related to Figure5.

Table S2. A list of predictions based on the associations in the Cancer Pathway-Regulatory Interaction Map,
related to Figure 6.



Supplemental Tables

Table S1
Tissue Sample Name Sample
Bladder CA Bladder Dyrskjot et al Carcinoma (Dyrskjot et al., 2004)
GBM Brain Liang et al Glioblastoma Multiforme (Liang et al., 2005)
OD Brain Bredel et al Oligodendroglioma (Bredel et al., 2005)
GL Brain Bredel et al Glioblastoma (Bredel et al., 2005)
Brain AO Brain Bredel et al Anaplastic Oligoastrocytoma (Bredel et al., 2005)
GL Brain Rickman et al Glioma (Rickman et al., 2001)
ODGL Brain Sun et al Oligodendroglioma (Sun et al., 2006)
AC Brain Sun et al Astrocytoma (Sun et al., 2000)
GLB Brain Sun et al Glioblastoma (Sun et al., 2006)
CA Breast Sotlie et al Carcinoma (Sorlie et al., 2001)
CA Breast Richardson et al Carcinoma (Richardson et al., 2000)
Breast MCA Breast Radvanyi et al Metastatic Breast Carcinoma (Radvanyi et al., 2005)
ILC Breast Radvanyi et al Invasive Lobular Carcinoma (Radvanyi et al., 2005)
IDC Breast Radvanyi et al Invasive Ductal Carcinoma (Radvanyi et al., 2005)
Colon CA Colon Graudens et al Carcinoma (Graudens et al., 2000)
Head-neck HSCC Head-Neck Cromer etal ~ Head-Neck Squamous Cell Carcinoma(Cromer et al., 2004)
HSCC Head-Neck Chung et al Head-Neck Squamous Cell Carcinoma (Chung et al., 2004)
Leukemia B-CLL Leukemia Haslinger etal ~ Chronic Lymphocytic Leukemia (Haslinger et al., 2004)
AD Lung Beer et al Adenocarcinoma (Beer et al., 2002)
AD Lung Bhattacharjee et al Adenocarcinoma (Bhattacharjee et al., 2001)
Lung COID Lung Bhattacharjec etal ~ Carcinoid (Bhattacharjee et al., 2001) .
SQ Lung Bhattacharjee et al Squamous Cell Lung Carcinoma (Bhattacharjee et al., 2001)
SMCL Lung Bhattacharjee etal ~ Small Cell Lung Cancer (Bhattacharjee et al., 2001)
AD Lung Stearman et al Adenocarcinoma (Stearman et al., 2005)
FL Lymphoma Alizadeh et al Follicular Lymphoma (Alizadeh et al., 2000)
Lymphoma DLBCL Lymphoma Alizadeh et al Diffuse Large B-Cell Lymphoma (Alizadeh et al., 2000)
CLL Lymphoma Alizadeh et al Chronic Lymphocytic Leukemia (Alizadeh et al., 2000)
Melanoma ML Melanoma Talantov et al Cutaneous melanoma (Hoek et al., 2006)
ME Melanoma Hoek et al Melanoma (Talantov et al., 2005)
Mesothelioma MPM Mesothelioma Gordon et al Malignant Mesothelioma (Gordon et al., 2005)
Myeloma MM Myeloma Zhan et al Multiple Myeloma (Zhan et al., 2002)
AD Ovarian Welsh et al Adenocarcinoma (Welsh et al., 2001)
CCC Ovarian Hendrix et al Clear Cell Carcinoma (Hendrix et al., 20006)
Ovarian MUC Ovarian Hendrix et al Mucinous Adenocarcinoma (Hendrix et al., 20006)
SRS Ovatian Hendrix et al Serous Adenocarcinoma (Hendrix et al., 2000)
END Ovarian Hendrix et al Endometrioid Adenocarcinoma (Hendrix et al., 2000)
Pancreas PDC Pancreas Ishikawa et al Pancreatic Ductal Carcinoma (Ishikawa et al., 2005)
AD Pancreas Logsdon et al Adenocarcinoma (Logsdon et al., 2003)
MPC Prostate Dhanasekaran et al Metastatic Prostate Cancer (Dhanasekaran et al., 2001)
Prostate PPC Prostate Dhanasekaran et al Prirr}ary ProstaFe Cancer (Dhanasekaran et al., 2001)
BPH Prostate Dhanasekaran et al Benign Prostatic Hyperplasia (Dhanasekaran et al., 2001)
TU Prostate Lapointe et al Primary Tumor (Lapointe et al., 2004)
CA Renal Higgins et al Carcinoma (Higgins et al., 2003)
Renal RCCC Renal Boer et al Clear Cell Renal Cell Carcinoma (Boer et al., 2001)
RCCC Renal Lenburg et al Clear Cell Renal Cell Carcinoma (Lenburg et al., 2003)
Seminoma GCT Seminoma Korkola et al Germ Cell Tumor (Korkola et al., 2006)




Table S2

GO terms Motifs Significance
chromatin assembly 3 }MBCU p < 1e-867
DNA packaging 3 En CgEUag p<le325
chromosome organization and biogenesis 57 HAT cc p<ledlll
ribonucleoprotein complex 5/ ‘”TCGA X p<le8J
DNA packaging 5/ %@ﬁgﬁm p<le84
DNA repair 57 ﬁane ) p<led]
mRNA processing 3 ;ju”UUU” p<le’
cell-cell adhesion 3’ “CUU p<le69
cell-cell adhesion 3 QHHG p<le6]
ubiquitin-protein ligase activity 3 MAC GA p<le64
protein-tyrosine kinase activity 3 ﬁj UCGc p<le63
Golgi vesicle transport 5 h@ﬂ“c p<le63
cytoskeletal protein binding 3’ 10 & p<le62
GPI anchor binding 3’ ‘“cccc p<le62
DNA repair 3’ f‘}g”.,lm p<let
humoral immune response 5 }ATTCM p<leb
phosphoinositide-mediated signaling 3 stAUEcﬁ p<le6
mitotic cell cycle 57 LC p<le59
mitosis 5/ ﬁﬂtwl[%mﬁé” p<less
response to wounding 5/ fHAMEGT p<le54
response to wounding 5 ﬁ”CécA p<leb3
cell-cell adhesion 5/ Zn” MAT% p<le52
mRNA metabolic process 57 mcc 8. p<lesl
small GTPase mediated signal transduction 57 ’QHCL p<les
Wt receptor signaling pathway 5 } BC A“ p<le4s
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Supplemental Procedures

In what follows, we provide a detailed descriptiminthe methods used in this study. The iPAGE safwa
along with a minitutorial and supplemental restitsthis study (both experimental and computatipraé
available online athttp://tavazoielab.princeton.edu/iPAGEDur approach, described here, involves the
discovery of the informativeis-regulatory elements and cellular pathways from gexmgression datasets; a
subsequent analysis recovers the pathways thdikale regulated by the identified putative bindisges. A
schematic of the FIRE/IPAGE framework is presemteligure 1.

Pre-processing of input datasets

All  cancer microarray datasets wused in this studyhen downloaded from GEO
(http://www.ncbi.nlm.nih.gov/projects/geo/). Eachancer versus normal dataset was converted into
continuous or discrete gene expression profileflbsvs.

In the continuous case (i.e., urinary bladder cBneach gene was associated with a continuousession
value based on the following equation:

(1) v=st-p),

wherep is ap-value calculated by performing a Studernttest between the cancer samples and the normal
controls.s is the sign of the difference between the averaees in these two sets. Thusindicates the
extent to which a gene is up-regulated or down{e¢gd in the cancer state with maximal and minivadlies

of 1 and -1 respectively.

In the discrete case, genes were first clustered -/ N groups N is the total number of genes) based on
their expression values in the normal and tumornpdasn using th&means unsupervised clustering approach.
Then the clusters whose average expressions didiffext between the normal and cancer samples (malmi
p-value fromt-test> 0.05, where the-test is performed on the expression profiles ioheeluster) were
combined into a single background cluster. Subsatyesach gene was associated with the clustesxird

the cluster to which it belongs.

FIRE: De novo discovery of infor mative regulatory elements

FIRE was used with default settings, as describdtlemento et al, 2007.

IPAGE: A detailed explanation of the algorithm

Expression profile

An expression profile is defined acrosdl genes, where each gene is associated with a uexjression
measure. Expression measures, discrete or consSpuman be obtained from a variety of gene-level
measurements or analyses. For example, clusteemdiom a partitioning process or the ranks obthinom
sorting are discrete measures; whereas, resuttsdreingle microarray or any continuous-type diat{®.g.,
p-values) are continuous values. In this study westdemonstrated this unifying capacity of iPAGHj. ein

the bladder carcinoma we have used a continuotistgtalerived from Student'stest while in the BL vs
DLBCL case we employed discrete indices obtainethfclustering of gene expression values acroshall
samples. From here forward, we refer to these b$teput values aexpression profiles. Schematized
continuous and discrete expression profiles arevsho Figure S1A.

Pathway Profile
11



Each gene can be associated with a subdet lafown pathways (e.g. from the Gene Ontology ariuuts).
For each pathway, thmathway profile is defined as a binary vector withelements, one for each gene. In this
profile, “1” indicates that the gene belongs to gaghway and “0” indicates that it does not. A sohézed
pathway profile is shown in Figure S1A.

Quantizing continuous expression profiles

Although the concept of mutual information is definfor both discrete and continuous random varitite
practice, continuous data are discretized befodeulzing the mutual information (MI) values. Our
quantization procedure is based on the maximunoeytorinciple (so as to make the least assumpabosit
the underlying data distribution), and involves ngsiequally populated “expression bins”. Thus, the
discretization step only requires a single paramete., the number of genes in each bin. In thiaue
IPAGE settings, the number of bifs.) is determined by:

(2 N, [N, =N/50

where N, is the number of bins in the pathway profile (hBkg=2). Although determiningNe values from
Eqgn. (2) allows a reliable calculation of mutualormation (Slonim et al., 2005), other values céso &e
explored by the user. In this study, we used theicoous mode in one of the datasets and variatiotise
number of bins did not significantly change theuttss Indeed, when we ran FIRE and iPAGE on thdd#a
carcinoma dataset with various numbers of bins $00,100 and 250), the identified seeds (k-mengjels
overlapped, with hypergeometipevalues always less than 1e-53 (down to le-28bnmescomparisons). We
made the same observation for the number of iPAd&Btified pathways, with hypergeometpevalues
always less than 1le-20 (down to 1e-83).

Calculating the mutual information values

Given apathway profile and anexpression profile with Ne bins (or clusters), we create a taffleof
dimensions 2xNe, in whichC(1, j) represents the number of genes that are contétirteejth expression bin
and are also present in the given pathv{(g, j), on the other hand, contains the number of géresare in
thej™ expression bin but are not assigned to the path@aen this table, we calculate the empirical nalitu
information as follows:

N, :
(3)  I(candidatgathwayexpressioh= iZP( j)log—A 7t P(i,j)

74 P()P(j)’
where (i, j)=Cli, /N P()=Y"P{. ) andP(j)= jp( i).

i=1 i=

Randomization-based statistical testing

To assess the statistical significance of the ¢afed M| values, we use a non-parametric randoimoizat
based statistical test. Givéras the real Ml value and keeping the pathway lerafhaltered, the expression
profile is shuffled 10,000 times and the correspogd/l valuesl angomare calculated. A pathway is accepted
only if I is larger than (Irax_p) of thel angomvalues fnax_p is set to 0.005 by default). This corresponds to a
p-value < 0.005. In iPAGE, pathways are first st information (from informative to non-informed).
Starting from the most informative pathway, theist&al test described above is applied to eachvyy,
and pathways that pass the test are returned (dvhey also pass the conditional information described
below). Wherk contiguous pathways in the sorted list do not plasgest, the procedure is stopplkds(set to

20 by default).

Removing redundantly infor mative pathways
Due to the hierarchical and nested nature of patharanotations (e.g. Gene Ontology), many pathways
display some level of redundancy, i.e., two pathsvanay be represented by very similar sets of génes

12



GO0:0006511, ubiquitin dependent protein catabaiicess and GO:0019941, modification dependentiprote
catabolic process). To discover representativewsth and remove redundant ones, we require thdt eac
returned pathway be highly informative about theregsion profile, but also bring a significant amoaf
new information compared to all other significantijormative pathways as calculated by conditianatual
information (Cover and Thomas, 2006). To achievg the require that each candidate pathway fulfills

| (candidatgathwaygexpressiot accepteqbathwayé
(candldatepathwayaccepteqbathwa))

(4)

for all already accepted pathways, i.e., all paffswoat have already passed the statistical anditoamal

information tests. An identical criterion was used~IRE (Elemento et al., 2007). In iPAGEis set to 5 by
default and only the pathways satisfying the abegeation are presented in the graphical output;elvew
the list of all significant pathways is also crehésd stored as a text file.

Pathway over- and under-r epresentation

Informative pathways are generally over-representaegnder-represented in certain expression clisies.
To quantify the level of over- and under-represemba the hypergeometric distribution is used ttcalate

two distinctp-values:
N -m

) (nJ

N-m
6) P (X <X)= ﬁU(n— J

© ()

wherex equals the number of genes in the given expnessidcluster which are also assigned to the given
pathway.m is the number of genes assigned to the pathwas/the number of genes in the expression bin
and N is the total number of genes. gfie<punder, We consider the pathway to be over-representetian
expression bin/cluster; otherwise, it is under-espnted.

(5) P (X=2x) for over-representation

for under-representation,

IPAGE graphical output

The over- and under-representat@nalues described in the previous section are tsaettaw a heatmap,
l.e., a graphical representation of pathway ovad ander-representation across all expressiondbiussérs.
In this heatmap, the rows represent the signifiganformative pathways and the columns are theesgon
bins/clusters. Colors indicate over- or under-repngation levels. The red color-map indicates g the
over-representatiop-values; whereas, the blue color-map shows ungeesentation.

Additional iPAGE output files
In addition to the graphical heatmap, iPAGE gemsrdites containing the actual Igg¢alues) for over- and
under-representations, and the list of removednéadnt pathways.

False Discovery Rate (FDR)

In order to measure the FDR of our method, we ramgshuffled the gene labels of the gene expression
profile and counted the number of pathways dis@erompared to the non-shuffled data. For the BL vs
DLBCL dataset, in two random trials we found onrage one significant pathway in comparison with 525

13



pathways discovered in the real dataset. In th&rmoous bladder carcinoma dataset, we found 224#fgignt
pathways, whereas, in randomized expression psofllé significant pathways were deemed significant.
Similar tests on other datastes puts the falseodésy rate of IPAGE in the range of 0.001 to 0.0zhw
continuous datastes biased towards higher FDRs.

IPAGE command line
The basic command line syntax for iPAGE is :

perl page.pl --expfile=<inp> --species=<sp> --ex@y<type>

where <inp> indicates the input expression prafiéwo-column tab-delimited text file with gene resrnin
the first column and expression measures in themsBc <sp> indicates the species, and <type> itgkca
whether the expression profile is discrete (elgster indices) or continuous (e.g., expressioneslobtained
from a single microarray experiment). We have ptkpged pathway annotations for many species, rgngin
from bacteria to human.

For example, the following command line will rurABE on a continuouk. coli expression profile :
perl page.pl --expfile=./TEST/continuous.exp --spseshuman_go --exptype=continuous

IPAGE creates an expfile_ PAGE directory where #sults are saved to (./TEST/continuous.exp_PAGE in
this case).

Pathway-Regulatory Interaction Map Generator (PRMG)

Motif definition

As described in (Elemento et al., 2007), regulaggments (motifs) are defined wegular expressions and
can only consist of the following characters: A&, T, [AC], [AG], [AT], [CG], [CT], [GT], [ACG], [ACT],
[AGT], [CGT], and N (equivalent to [ACGT)).

Motif profile

We look for motifs both in 5’ upstream (DNA motifahd in 3'UTR sequences (RNA motifs). Given a motif
the motif profile is defined as a binary vector withh elements, where for each gene, “+1” indicates the
presence and “0” indicates the absence of the nmottie corresponding promoter (or 3'UTR). “1” indies

that at least one match of the regular expresssoprésent in the sequences (see Figure S1B). For 5’
sequences both strands are searched; whereadJirR3sequences only the transcribed strand is deresl.

We used a generic definition attive motif profile (Elemento et al., 2007) to build the pathway-ratury
map; i.e., we only count the motif occurrences #ratin expression cluster/bins in which the mistibver-
represented. This approach filters out motif ocuees that are unlikely to be functional.

Pathway Profiles
For each pathway, thmathway profileis defined the same as in IPAGE.

Creating pathway-regulatory interaction maps

In the first step, we calculate the mutual inforimatbetween thenotif profile andpathway profile for each
pair of motifs and pathways. We then assess thafisignce of these associations through 1,000 nando
shuffles of the motif profile and recalculating thiké values. By default, a category is accepted dinllge real
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Ml is larger than 995 of the random values. Theoassions that pass this test are deemed signifiaad
their under- or over-representatipivalues are calculated using equations (5) and (6).

Graphical output

We build a matrix with motifs as columns and patisvas rows where the non-zero elements represent th
log10(p-value) in case of over-representations and Iqg¥@({ue) otherwise. This matrix is then visualized a
a blue-red heatmap with red and blue elements septieg positive and negative associations respgtiA
schematic representation of this method is showsigare S1B.

PRM G command line

The PRMG script (prmg.pl) is part of the iPAGE pagé& and is located in the PAGEvx.x directory; hosvev
it also relies on FIRE outputs to run (FIRE is ¢éaale athttp://tavazoielab.princeton.edu/FIRE/

export FIREDIR=/path/to/FIRE
export PAGEDIR=/path/to/iPAGE
perl prmg.pl --expfile=<inp> --species=<sp>

where <inp> indicates the input expression profidgp> indicates the species. The script does nok wo
expfile itself, but uses it to locate IPAGE and FIRE summfiiles (in expfile_ PAGE and expfile_FIRE
directories).

For example, the following command line will runB& on a continuous expression profile:

perl prmg.pl --expfile=./TEST/continuous.exp --sigsshuman_go

The results are written to a motif_cat.cdt file @hd graphical representations are created in thtd roat.eps
and motif_cat.pdf files. In order to run this pragr you also need to install the cluster 3.0 pertiér at
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/softwdtester/software.htrand define a global variable termed
USRDIR pointing to the directory where this binteemstalled:

export USRDIR=/path/to/cluster3

The Regulatory Network of Bladder Carcinoma

Our general meta-analysis of bladder cancer vs alo(Byrskjot et al., 2004) reveals the most promine
signatures of a cancer state: in this case, arfastecycle and a repressed immune response thriug
regulatory effects of E2F and SEF1/E47 transcniptiactors respectively. We also identified a ramfe
significant cisregulatory elements, including a putative 3'UTRersént, NUNGNUGU (seed
UAGAUGU/TAGATGT) (Figure 2B, main text). Our ap@ch also reveals that several of these motifs co-
occur in promoters or 3'UTRs of the same genesufei®2A), thus suggesting possible cooperationsdest
the regulatory factors that bind them. In ordepttovide additional evidence for these predictedoenations,
we used the approach described in Pilpel et aD{P® compare the extent to which two of the nawetifs
(one DNA and one RNA) cooperate with the Elk-1 riotico-regulating their target genes. First, wiested
1000 random pairs of genes and used Pearson dmmeia calculate the correlation coefficient (Rtlween
the expression levels of each pair across the btaddrcinoma dataset (Dyrskjot et al., 2004). Wenth
repeated the same procedure, this time on thd genhes harboring an Elk1 motif in their upstreaguence.
As it is shown in Figure S2B, the distribution bétresulting R-values from EIk1 target genes iftesthito the
right compared to the random background valyesa{ue <le-14). The genes harboring the DNA motif
[ACGJACGTICT][CGT][AG][CGT] (seed ACGTCGG), show distribution similar to that of Elk1pfvalue
<le-15) and focusing on the genes that harbor diotie motifs results in an even larger shift todgahigher
R-values p-value <l1e-15). The-values reported in each case have been calculated Mann-Whitney test,
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comparing each distribution to that of the backgu Repeating this procedure for
[ACU]JU[ACU]G[ACG]UGU (seed UAGAUGU/TAGATGT), resultd in comparable distributions (Figure
S2B). These observations further highlight the dgatal relevance of the discovered novel motifs and
provide additional support for the predicted motteractions.

Building a regulatory map of cancer deregulation

We studied regulatory perturbations across mangeratypes to capture both globally deregulated rande
cancer-specific pathways. We compiled a compendafm46 cancer versus normal gene expression
microarray datasets (Table S1). We then processeddmples and used iPAGE to build a cancer pathway
map (Figure 5 in the main text). We also used FoREBur compendium to build a cancer regulatory niap.
essence, sequence motifs whose associated gengssgjficant deregulation in the tumor samples are
identified and compiled to form this regulatory m@&pgure S4A). Apart from their independent occooes

in multiple datasets, most of these motifs alsoehligh network-level conservation scores (Figur®)S4
Figure S4B also includes th@s-regulatory elements identified in the bladder sama and lymphoma
datasets.

Subsequently, using an information-theoretical apph, we associated the discovered-regulatory
elements with the deregulated pathways to buildrecer pathway-regulatory interaction map (Figur€)s4

In Table S2, we list a number of novel and sigaificassociations from this map, representing amaunk
regulatory protein (or miRNA) potentially regulagirthe associated pathway through recognition of the
corresponding sequence motif. In some cases, we i@dicted novel associations for known transiompt
factors (or miRNAS).

Experimental validation of the discovered regulatory associations

Transfection of SRNAs targeting Elk1 and NFYA transcription factors

ON-Targeplus™ (Dharcomon) set of siRNAs for each TF were tractsfe into MDA-MB-231 cells (growin
in D10F medium) using Lipofectamil& 2000 (invitrogen). 72 hours after transfection, /Ramples were
extracted from the cells (mirVana™ miRNA Isolatidfit) and were subjected to cDNA synthesis
(SuperScript® Il RTS First-Strand cDNA Synthesigt Kom Invitrogen). mRNA knock-down in each
sample was verified using SYBRE Green qPCR reagt({@miversal ProbeLibrary Assay Design Center,
Roche Applied Science). For each TF, we selecteddfrthe successfully knocked-down transfectiond an
extracted their total RNA along with mock-transézticells as controls. We then differentially labethe
RNA samples with Cy3 and Cy5 dyes and hybridizedhtiio Agilent human gene expression arraygi{4).
The genes with significant discordant changes batvike two biological replicates were filtered aat for
the rest, the Cy3/Cy5 values were averaged and ioeahinto a single dataset as log of ratios. Thaession
profiles are deposited in GEO (GSE18849) and @ alailable atttp://tavazoielab.princeton.edu/iPAGE/

Transfection of decoy and scrambled oligonucleotide sequences

For the validation experiments, we chose two of gemes implicated by FIRE to have a version of
AAAAJATG]TT (NM_000337 and NM_001024660). For eadgene, we then synthesized a 19bp sequence
containing the AAAA[ATG]TT motif. These sequenceer® also randomly shuffled to create scrambled
sequences as controls. The resulting sequences syatbesized as double stranded oligonucleotides:
Decoyl: caattGAAATTTTGagcaa, Scrambledl: OtTtATAGReaGaTGa, Decoy2:
gctggAAAAAATTTaagac, Scrambled2: aagATTgctAgAAgAaATc. We then transfected these
oligonucleotides into MDA-MB-231 cells grown in DEnedium at a concentration of @M (TransIT®-
Express Transfection Reagent). 72 hours post-teaheh, we extracted RNA and differentially labekbe
samples with Cy3 or Cy5 dyes. The samples were hiybridized to Agilent human gene expression arrays
(4x44k). The Cy3/Cy5 ratios from the two sets werentheeraged, filtered and combined in a single @atas
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as log of ratios. In this step, we filtered out 6@@enes that showed significantly discordant esgiom level
changes in the two biological replicates. The esgimn profiles are deposited in GEO (GSE18844)ard
also available dtttp://tavazoielab.princeton.edu/iPAGE/

FIRE analysis of experimentally tested associations

As shown in Figure S5, we used FIRE to also anabmegene expression profiles from both decoy vs.
scrambled dataset and TF knock-down datasets. & ARMAA[ATG]TT dataset, in addition to
ATAJAT][GT][CT]T[AT] (which resembles the reverse omplement of AAAA[ATG]TT), we also
discovered Elk4 and another novel motif (Figure F5Fhe observed deregulation in the Elk4 downstream
genes explains the up-regulation in the cell cgelpes, as this TF is a known modulator of mitdSisnilarly,

we observed an up-regulation in the genes harbahagCCAAT motif in the NFYA knock-down dataset
(Figure S5C).
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