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Supporting Material 

Methods 

Thinning 

Proposal acceptance in Bayesian phylogenetic analysis using MCMC depends on the 

previous state of the chain, thus a certain amount of inter-generational autocorrelation is 

expected for all parameters being sampled (1), including tree topologies.  Because of auto-

correlation, the number of truly independent samples in the posterior is smaller than the total 

number of sampled generations.  Integrated auto-correlated time (IACT) is the generation lag 

that must be exceeded before significance in temporal autocorrelation breaks down (2).  For 

instance, if the posterior has 20,000 trees (after burn-in) and IACT equals 100, a set of 200 

independently sampled trees is obtained by sub-sampling every 100
th

 generation.  These 200 

trees represent the effective sample size (ESS).  Because both distributions have identical ESS’s, 

the sub-sampled set provides an equivalent approximation of the posterior, even though it is 100 

times smaller than the original sample size (2).  This sub-sampling strategy is called “thinning” 

(3-4). 

 Log-likelihood IACT was obtained from MrBayes parameter files (.p) using Tracer v1.3 

(5).  We used a Perl script (ThinLog) to sub-sample parameter files and the resulting distribution 

was re-analyzed to verify if log-likelihood IACT had been effectively reset to 1 (i.e., no auto-

correlation).  ThinLog was then used to sub-sample tree files (.t) and to combine resulting trees in 

a single file from which a new consensus tree was computed using MrBayes.  The resulting node 

posterior probabilities were compared to the ones obtained from the original (non-thinned) tree 

distribution to check for changes in node support across the tree.  Thinning reduced the posterior 
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distribution from 28,874 to 312 trees.  No nodes with posterior probability above 0.95 were 

“lost” in the consensus computed from the sub-sampled tree set.  

Bayesian ancestral state reconstruction 

The statistical framework of maximum-likelihood (6) was used to describe evolution of 

coloniality in corals.  The method is formally defined by an instantaneous rate matrix Q (in this 

case for 2 states): 
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where q01 is the instantaneous rate of change from states 0 (solitary or azooxanthellate, 

depending on the character considered) to 1 (colonial or zooxanthellate) and q10 represents 

transitions in the opposite direction.  The corresponding probabilities are obtained by 

exponentiating Q after multiplying it by a given branch length.  The likelihood of each set of 

rates is obtained by combining all probabilities across all branches and all possible ancestral 

states of the phylogeny.  The combination of coefficients that maximizes the likelihood function 

is the maximum-likelihood (ML) solution.  One can subsequently attempt to simplify the model 

by constraining one or more rate coefficients to be equal and comparing the resulting ML values 

to the ones obtained under the original model via a likelihood-ratio (LR) test.  If certain 

transitions occur very infrequently, one might also attempt to set the corresponding rate 

coefficients to zero.  For more details on the method, see (6-7). 

 The ML approach has the drawback of not accounting for phylogenetic uncertainty since 

rates are evaluated on a single tree.  Even if ML solutions are computed across a range of trees, 

there is no unique way of summarizing the corresponding distribution of maximum-likelihoods 

before performing LR tests.  A suitable alternative is applying a Bayesian framework to the 

problem by sampling trees from a posterior distribution obtained via Markov chain Monte Carlo 
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(MCMC) and using these topologies to construct a second chain to generate a posterior 

distribution of rate coefficients.  This method can also be used to estimate the Bayesian posterior 

probability (BPP) of a state on a certain node while factoring phylogenetic uncertainty into this 

computation.  Hence, if the BPP of a node is 0.95, the maximum posterior probability for the 

reconstruction of an ancestral state at that node will also be 0.95.  In other words, the BPP of the 

state at the node cannot exceed the BPP of the node itself (3). 

A variant of this Bayesian approach employs reversible-jump Markov chain Monte Carlo 

(RJ-MCMC) (8).  At each step, RJ-MCMC not only proposes new rate coefficient values but it 

also attempts to modify the number of parameters in the model by constraining some of them to 

be equal (merging), removing this constraint (splitting), setting one or more rates to zero 

(reducing) or reversing this move (augmenting).  Hence, RJ-MCMC also provides a posterior 

distribution of models.  The significance of the Bayesian belief in a particular model can be 

formally tested using Bayesian factors which are defined as: 
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where i and j denote two different models, P(Mn | D)is the posterior probability of model n, 

given by the proportion of time the chain spent on this model and P(Mn) is its prior probability.  

The prior probability is calculated as the fraction of the total number of models.  For two states, 

there are 4 possibilities: the one-rate model (i.e. q01 = q10, transitions in either direction are 

equally likely), the two-rates model (q01 ≠ q10) and two additional models in which one of the 

coefficients is set to 0.  Given that Bayes factor BFij, values in the 3-12 range are positive 

evidence for model i, values above 12 represent strong evidence and values greater than 150 

provide very strong evidence in favor of model i. (9) 
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 The RJ-MCMC approach also allows the testing of correlated evolution between binary 

characters.  The assumption is that if characters are evolving independently, the instantaneous 

rates of transition from one character state to another should be independent of the background 

state of the other character.  Using the same framework described above 

   0,0 0,1 1,0 1,1   

 

Q = 

0,0 … q12 q13 0   

 0,1 q21 … 0 q24  (3) 

 1,0 q31 0 … q34   

 1,1 0 q42 q43 …   

 

where the states for both characters were coded using the same convention above (i.e. 0,0 stands 

for solitary/azooxanthellate, 0,1 for solitary/zooxanthellate, etc.).  Under this framework, 

instantaneous state changes in both characters are not allowed (e.g. q14, the rate that would 

correspond to a solitary/azooxanthellate to colonial/zooxanthellate transition is set to 0) although 

these transitions may occur the longer run. 

Under the independent model, the probability of going from solitary to colonial should be 

the same whether it occurs in azooxanthellate or zooxanthellate ancestor-descendant pairs, hence 

q13 =  q24.  Likewise, the rates of loss of symbiosis should be the same whether coloniality is 

present or not (q21 = q43).  There are 4 such pairs of rates hence the most complex model model is 

reduced to four parameters 
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   0,0 0,1 1,0 1,1   

 

Q = 

0,0 …   0   

 0,1  … 0   (8) 

 1,0  0 …    

 1,1 0   …   

where is the transition rate between the states 0 and 1 and is the rate of transition from 1 to 0.  

The subscript of these rates denotes the character they refer to (1 for symbiosis and 2 for 

coloniality).  Note that the number of parameters in the model can be reduced even further by 

constraining these pairs to equal each other or setting them to 0.  Hence, if  or if 

the model is still independent.  The total number of possible independent models is 

47.  If rates within any of these pairs are different or if one of the rates is set to 0, the model 

becomes dependent.  There are 20,001 possible dependent models with 8 rates (see Methods 

section in Supplemental Material for details on the calculation of number of models). 

One can test for correlated evolution of characters by running separate analysis under 

independent and dependent models and comparing the results.  In a likelihood framework, the 

ML solution would be estimated under the full independent and dependent models and since (8) 

is a subset of (3), the LR statistic is 

distributed with 4 degrees of freedom (the difference in 

the number of parameters between the two models).  In “discrete” mode, the RJ-MCMC chains 

are constructed so that the sampling is biased towards the models of choice (independent or 

dependent) although there is a small probability that they may sample the alternative model.  

Hence, if there is strong Bayesian belief that the evolution of characters is uncorrelated but the 

chains are run under the dependent model, the likelihood values sampled from the posterior will 

be smaller than those obtained by the “independent” run.  Significance can be assessed by Bayes 
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factors as the difference between the marginal log-likelihood obtained from each run.  Exact 

computation of marginal log-likelihoods is difficult (8) but they can be unbiasedly estimated by 

the harmonic mean of the running log-likelihoods(10).  Bayes factors are then given by 

𝐵𝐹𝐷𝐼 = 2(𝐻𝐷 − 𝐻𝐼) (9) 

where HD and HI are the harmonic means of the log-likelihoods sampled under the dependent 

and independent models.  Harmonic means almost surely converge when the number of 

generations tends to infinity, but are unstable because of their sensitivity to sporadic sampling of 

extreme log-likelihood values (10) hence it is advisable to run a number of different chains to 

assess the robustness of the results (8).  

Calculation of prior distributions of models 

Under the most complex model, all rates are estimated separately, hence q12 ≠ q13 ≠ q21 ≠ 

q24 ≠ q31 ≠ q34 ≠ q42 ≠ q43.  However, as explained above, one can reduce the number of 

parameters in the model by constraining some of the rates to be equal.  In other words, these 

rates are placed in the same rate category.  The most complex model has 8 rates and 8 categories.  

A convenient notation would be (0, 1, 2, 3, 4, 5, 6, 7) where each algorism corresponds to a 

category and their position in the set corresponds to the rates arranged as (q12, q13, q21, q24, q31, 

q34, q42, q43).  If any 2 rates are constrained to be equal, there are 8 rates and 7 categories.  The 

models (0, 0, 1, 2, 3, 4, 5, 6) and (1, 0, 0, 2, 3, 4, 0, 0) are 2 possibilities (we designate the first 

category as 0 instead of 1 in accordance with the notation used in Bayes Traits).  In the first 

model q12 = q13 (hence the first two rates are assigned to category 0) and q13 = q21 = q42 = q43 in 

the second.  The total number of models is given by the Stirling number of the second kind (8), 

which counts the way one can arrange n elements in c partitions: 
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The total number of models is given by n
th

 Bell number 

𝐵𝑛 =  𝑆2(𝑛, 𝑖)

𝑐

𝑖=1

 (3) 

which is 4,140 for 8 rates.  The full set of Stirling numbers make up the prior distribution of 

models and for 8 rates we have  S2(8,1) = 1, S2 (8,2) = 127, S2 (8,3) = 966, S2 (8,4) = 1,701, S2 

(8,5) = 1,050, S2(8,6) = 266, S2(8,7) = 28, and S2 (8,8) = 1 (8). 

Because categories can be also set to zero, the total number of models is much larger.  

For instance, (Z, 0, 1, 2, 3, 4, 5, 6) would be a 8 rate/8 parameter model in which rate q12 was set 

to zero (the use of Z follows the notation adopted in Bayes Traits to prevent confusion with the 

algorism 0, which designates a non-Z category). 

We can build 8 additional 8 category models by constraining each of the other categories 

to zero, i.e. (0, Z, 1, 2, 3, 4, 5, 6), (0, 1, Z, 2, 3, 4, 5, 6), etc.  We can only assign one category at 

a time to zero without reducing the total number of categories.  For instance, if we assign 2 

categories to zero, we now have a 7 category model, since these 2 rates now to belong to the “Z” 

category.  The total number of models for n rates and c categories is then given by the 

“expanded” Stirling number (the name was introduced in (8)) 

𝐸2(𝑛, 𝑐) = 𝑆2(𝑛, 𝑐)(1 + 𝑐) (4) 

and the total number of models is given by the summation 

 𝐸2(𝑛, 𝑖)

𝑐

𝑖=1

=  𝐵𝑛+1 (5) 

which is 21,147 in the case of 8 rates.  The value reported in (8) is actually 21,146.  This is 

because if the one-category model is set to zero, i.e (Z, Z, Z, Z, Z, Z, Z, Z), this means no 
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character evolution, so this model should not be considered part of the prior.  Hence, the M 

number of non-trivial models for n rates is 

𝑀𝑛 = 𝐵𝑛+1 −  1 (6) 

Let us now consider the 4 parameter Q matrix that corresponds to the independent model, 

described in (3).  Because 4 pairs are constrained to the same rate, the total number of models is 

M4 = 51.  However, models where ZorZare also trivial, because under these 

models, no state transitions ever occur for the constrained characters.  Using the notation 

described above and arranging the rates as (these models are (Z, Z, 0, 0 (0, 0, Z, 

Z), (Z, Z, 0, 1), etc.  If we constrain all the rates of a character 1 to zero, we are left with two 

unconstrained rates for character 2 and vice-versa.  So the total number of N non-trivial models 

for a 4 rate matrix is 

𝑁(4,2) = 𝑀4 −  2𝑀2  (8) 

or 43 models.  This formula can be generalized to 

𝑁(𝑓,𝑟) = 𝑀𝑓 −  2𝑀𝑓−𝑟  (9) 

Where f is the number of free parameters and r is the number of parameters that need to be 

constrained in order to make the model trivial.  In the case of the 8-parameter model in (1): 

𝑁(8,4) = 𝑀8 −  2𝑀4  (10) 

Hence, there are 21,044 non-trivial models under the prior distribution, but since 43 of these 

models are independent, the number of non-trivial dependent models under the prior is given by 

𝐷 = 𝑁(8,4) − 𝑁(4,2) (10) 

which is 21,044 - 43 = 21,001. 
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Hypotheses testing 

 One can use this framework to compute the prior probabilities of models used in the 

Bayes factors  
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 Bayes factors can be used to address very specific hypotheses.  For instance, one may 

wish to verify if models in which one rate is set to Z are sampled from the posterior more 

frequently than expected under the prior.  The number I of non-trivial independent models for 8 

rates in which one specific rate was set to Z is given by  

𝐼 = 𝑀3 − 𝑀2 − 𝑀1 (13) 

or 14 – 4 – 1 = 9.  The difference with respect to equation (8) arises because of the following.  

Let’s assume that the rate in equation (7) is set to Z.  Since one category has been assigned to 

Z, there are 3 free parameters in the model.  There are M2 trivial models in which  (i.e. 

when all the rates in character 1 are set to Z).  However, there’s just one non-trivial independent 

model when .  This is because  is already constrained to Z, so this leaves only one other 

possible model,  ≠ Z.  

 Following the same reasoning, under the 8-parameter prior, the total number of non-

trivial dependent models with one specific rate assigned to Z is given by 

𝐷 = 𝑀7 − 𝑀4 −𝑀3 − 𝐼 (14) 

or 4139 – 51 – 14 – 9 = 4,065.  This corresponds to approximately 20% of all the 20,001 non-

trivial dependent models under the prior. 

 One may also be interested in testing if two specific rates are placed in the same (non-Z) 

category more often than the prior expectation.  Under the independent prior, when 2 rates are 
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constrained to the same category, we are left with 2 free parameters.  If the constrained rates 

refer to the same character (i.e.  or ), the number of independent models is M2 = 4.  

However, if the rates constrained not to be Z refer to different models (i.e. , , 

 or ) then the number of non-trivial independent models (I) is B3 = 5 (recall from 

equation 5 that the summation over all c categories of the expanded Stirling number E2(n,c) is 

Bn+1).  This is because even if all free rates are assigned to Z, the model will not be trivial since 

one rate from each character was constrained to be non-Z.  Likewise, under the dependent model, 

if we assign two rates to the same category, we are left with 6 free categories.  If these rates refer 

to transitions occurring in different characters, all non-trivial dependent models are given by 

𝐷 = 𝐵7 − 𝐼 =  𝐵7 − 𝐵3 (15) 

or 877 – 5 = 872.  These models make up 4.36% of the prior. 

If the rates refer to the same character, the number of non-trivial dependent models is given by 

𝐷 = 𝐵7 − 𝑀2 −  𝐼 =  𝐵7 − 𝑀2 −  𝑀2 (16) 

and 877 – 30 – 30 = 817.  The first term refers to the total number of models with 6 rates.  The 

second term refers to the M2 trivial models, obtained when all of the unconstrained character’s 

rates are assigned to the Z category.  The proportion of such prior models is slightly smaller in 

this case (4.08%). 
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Figure legends 

Fig. S1. Running Bayes Factors for (a) symbiosis and (b) coloniality.  Median is represented by 

the blue line.  Posterior probability distribution in of symbiotic and colonial states are in the 

insets.  Note that in the case of node P, the probability symbiosis is close to zero.  Hence, Bayes 

factors in favor of symbiosis are negative (note difference in scale of the y axis). 
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