Supporting Information for

Conservation of Progesterone Hormone Function in Invertebrate Reproduction

E. Paige Stout^a, James J. La Clair^c, Terry W. Snell^b, Tonya L. Shearer^b, & Julia Kubanek^{a,b}

^aSchool of Chemistry and Biochemistry and ^bSchool of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA ^cXenobe Research Institute, 3371 Adams Avenue, San Diego, California, 92116, USA

Corresponding author: julia.kubanek@biology.gatech.edu

Contents:

- I. Supporting schemes and figures
- II. Supporting Western blot methods
- III. Synthetic procedures and compound characterization data

I. Supporting schemes and figures

Supporting schemes

Scheme S1. Synthesis of IAF labeled progesterone probe **2**. Reagents and conditions: **a**) *N*-boc-1,4,-butyldiamine, HATU, DMF, 89%; **b**) TFA, CH₂Cl₂, rt; **c**) 7-dimethylamino-4coumarinacetic acid, EtN*i*Pr₂, HATU, DMF, 67% over two steps.

Scheme S2. Synthesis of IAF labeled control probe **3**. Reagents and conditions: **a**) *N*-boc-1,4butanediamine, Et₃N, HATU, DMF, 80%; **b**) TFA, CH₂Cl₂, rt; **c**) 7-dimethylamino-4coumarinacetic acid, Et₃N, HATU, DMF, 52% over two steps.

Scheme S3. Synthesis of reactive ester 4. Reagents and conditions: a) HATU, DMF, 94%.

Figure S1. *Brachionus manjavacas* hatchlings incubated with the IAF-labeled progesterone probe 2 (right) and a fluorescent control 8 (left) at 10 μ g/mL. Uptake of 8 was not detected under the conditions used to image hatchlings incubated with 2.

Figure S2. Steroids isolated from *Brachionus manjavacas* including campesterol (24*R*-ergost-5en-3β-ol, **5**), campesta-5,7-dien-3-β-ol (**6**), and 5- α -campest-7-en-3-β-ol (**7**). Authentic standards of **5** and **7** were purchased from Sigma-Aldrich for verification of structures. Campesterol (Sigma-Aldrich product number C5157) was purchased as a 65:35 mixture of crystalline 24*R*-ergost-5-en-3β-ol and 24*S*-ergost-5-en-3β-ol, distinguishable via ¹³C NMR spectroscopy. Carbon-13 NMR spectral data was acquired for both the authentic standard and the isolated rotifer steroid. ¹³C NMR spectral data for the isolated rotifer steroid **5** were identical to 24*R*-ergost-5-en-3β-ol ¹³C NMR chemical shifts, consistent with the hypothesis that **5-7** were of dietary (algal) origin. Sterol **6** was identified by comparing spectrometric data to reported literature values.

Figure S3. LC-MS/MS data operating in multiple reaction monitoring mode for analysis of progesterone in a partially purified rotifer steroid-containing fraction; **a**) blank injection prior to sample analysis; **b**) LC chromatogram of rotifer steroid sample, where progesterone elutes at 14 min.; **c**) mass spectrum of LC peak at 14 min corresponding to progesterone [M+H]⁺ m/z 315.4; **d**) MS/MS daughter ions of m/z 109.1 and 97.1, corresponding to known progesterone fragmentation.

Figure S4. MS/MS detection of peptides: (top) daughter ions of m/z 1239.57 corresponding to EWEMQFLEK and (bottom) daughter ions of m/z 1589.74 corresponding to DFYGPGGPYSVFAGR.

P1:	1	EWEMQFLEK	9	P2:	2	FYGPGGPYSVFAGR	15
A1:	160	EWEMQFMEK	168	A2:	103	FYGPGGPYSAFAGR	116
B1:	137	EWEMQFMEK	145	B2:	64	FYGPGGPYEVFAGR	77
C1:	163	EWEMQFMEK	171	C2:	91	FYGPGGPYSNFAGR	105

Figure S5. Blast searches on the respective peptides EWEMQFLEK (P1) and DFYGPGGPYSVFAGR (P2). Peptide A1 is found in the progestin membrane receptor component 2 from *Oncorhynchus mykiss* (gb|ABD58973.1|, 88% identities); B1 is found in the progesterone receptor membrane component 1 from *Strongylocentrotus purpuratus* (ref|XP_783332.1|, 88% identities); and C1 is found in the progesterone receptor membrane component 2 from *Danio rerio* (gb|AAH53415.1|, 88% identities). Peptide A2 is found in the progestin membrane receptor component 1 from *Penaeus monodon* (gb|ACC62174.1|, 92% identities); B2 is found in the steroid binding protein 1 from *Thalassiosira pseudonana* (gb|EED96317.1|, 92% identities); and C2 is found in the hypothetical protein FG02758.1 from *Gibberella zeae* PH-1 (ref|XP_382934.1|, 86% identities).

ATGGCC CGACGGTTCTTTGACGATGT GCTACTTCTCGTACAAATTGATCAAAAAGATAGCACCAAATCGCCGGCGAGAAAAAAACTCAAAAT CAGAAAATGATTTGGCTAAAATGCCAAAACAAGATTTTACTTTGGAAGAGCTAAAGCAATATGACG GGATTAAATCCGATGGACGTATTTTAATTGGGGTACTTGGCAAAGTTTTTGATGTTTCAAAAGCGAA AGATTTCTATGGACCGGGCGGTCCGTATTCCGTATTTGCTGGTCGCGATGCATCCAGAGCGTTGGGC ACTTTTTCTGTGGACAAATCCCAATTTAAAGATGAATACGATGATCTAAGCGATCTGAAGAGTTCTC AGATGGAAAGTATCAAAGAATGGGAGATGCAATTTTTGGAAAAAATATCCACTTGTTGGTAATTGCT AAGGCCTGGTGAAGAGCCCACTGTTT

Figure S6. ORF within the rotifer progesterone gene (GenBank accession FJ829246) from the *Brachionus manjavacas* cDNA database. This is the reverse complement of the contig sequence. Bold and underlined bases indicate primer sequences; green indicates area amplified for the dsRNA used in RNAi knockdown experiments.

Figure S7a

Figure S7b

Figure S7c

Figure S7d

Figure S7g

Figure S7h

Figure S7i

Figure S7j

II. Supporting Western Blot methods

Western blotting studies using reactive probe 4

The method was first tested by screening for PR expression in a MCF-7 cell lysates. Whole MCF-7 cell lysate was prepared by homogenization in modified RIPA buffer (150 mM NaCl, 50 mM Tris-HCl, pH 7.4, 1% Triton X-100, 1 mM EDTA, 1 mM PMSF, 5 µg/ml aprotinin, 1 µg/ml pepstatin-A, 2 µg/ml ILeupeptin, 1 mM Na₃VO₄, 1 mM NaF). The debris was removed by centrifugation and the protein concentration was concentrated to 1 mg/mL using a 3 kDa cutoff filter. An aliquot of this lysate (500 μL) was treated with 20 μL of a 1 mg/mL stock of 4 in DMSO at 4 °C. A 50 μL sample was taken at 4 h and boiled for 5 min in SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% SDS, 0.01% bromophenol blue containing 5% β-mercaptoethanol). SDS-PAGE gel analysis was conducted on a Novex X-cell station using NuPage 4-12% Bis-Tris gels and MOPS SDS running buffer. Western blotting was conducted by transfer to Hybond-P PVDF membrane by GE Healthcare (Piscataway, NJ) followed by blocking for 2 h with a solution of 0.1% Tween-20 with 5% w/v nonfat dry milk 20 in trisbuffered saline (TBS, pH 7.6). One lane (lane L5, Fig. 3c) was stained with a mouse anti-progesterone receptor 00005241-M01 Anti-PGR (1-110) mAb (anti-PR) from Abnova (Ann Arbor, MI), in 0.1% Tween-20 with 5% BSA in TBS, and a Goat anti-mouse IgG HRP mAb conjugate from Promega (Madison, WI) in 0.1% Tween-20 with 5% BSA in TBS. A second lane (lane L6, Fig. 3c) was stained a mouse anti-progesterone IgG mAb (anti-P) from Assay Designs (Tapei City, Taiwan), in 0.1% Tween-20 with 5% BSA in TBS, and a Goat anti-mouse IgG HRP mAb conjugate from Promega (Madison, WI) in 0.1% Tween-20 with 5% BSA in TBS. For both experiments, the primary and secondary antibodies were applied at 1:100 and 1:2,000 dilution, respectively, from their manufactures preparation. The total protein content in each gel was determined by staining with ponceau S from Promega (Madison, WI).

III. Synthetic procedures and compound characterization.

Copies of ¹H and ¹³C NMR spectra on each compound are provided in Figure S7.

tert-butyl 4-((88,98,10R,138,148,178)-10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15, 16,17tetradecahydro-1H-cyclopenta[a]phenanthrene-17-carboxamido)butylcarbamate (10). HATU (157 mg, 0.41 mmol) was added to a mixture of 3-keto-4-etiocholenic acid 9 (65 mg, 0.021 mmol), *N*-boc-1,4-butyldiamine (53.5 mg, 0.28 mmol), and EtN^iPr_2 (108 µL, 0.62 mmol) in anhydrous DMF (5 mL). The reaction was allowed to stir for 12 h at rt and then dried under vacuum. Any remaining HATU was precipitated with CH₂Cl₂ and removed via filtration. Compound 10 (94 mg) was obtained as a colorless oil, 89% yield. ¹H NMR (CDCl₃, 500 MHz) δ : 7.98 (bs, 1H); 6.99 (bs, 1H); 6.51 (s, 1H); 3.63 (m, 1H); 3.35 (m 3H); 2.90 (s, 6H); 2.66-2.41 (m, 2H); 2.36-2.22 (m, 1H); 2.27-2.16 (m, 3H); 2.11-2.01 (m, 2H); 2.00-1.88 (m, 1H); 1.87-1.73 (m, 1H); 1.67-1.42 (m, 6H); 1.41-1.25 (m, 5H); 1.23 (s, 3H); 1.19-1.05 (m, 3H); 1.02 (s, 3H); 0.94-0.58 (m, 4H); 0.39 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 197.5; 171.7; 170.3; 155.9; 123.5; 77.5; 56.4; 55.6; 54.1; 43.6; 39.9; 38.6; 38.5; 38.2; 37.9; 35.8; 35.6; 33.7; 32.5; 32.1; 27.9; 27.5; 27.2; 24.4; 23.5; 20.8; 16.8; 13.0. HR-ESI-MS (*m*/*z*): Calcd for C₃₁H₅₁N₂O₄ [M + H], 515.3771; Found 515.3784.

(R)-N-(4-(2-(7-(dimethylamino)-2-oxo-2H-chromen-4-yl)acetamido)butyl)-4-((3R,5S,7R,8R, 9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta-[a]]phenanthren-17-yl)pentanamide (2). Intermediate 10 (54 mg, 0.10 mmol) was dissolved in CH₂Cl₂ (1 mL). Trifluoroacetic acid (0.020 mL, 0.285 mmol) was added dropwise and the reaction was allowed to stir at room temperature for 1 h. The reaction was then diluted with CH₂Cl₂ (10 mL) and washed with 0.001 N NaOH (1 mL) and water. The organic layer was concentrated *in vacuo*, and crude amine was used without further purification. HATU (80 mg, 0.20 mmol) was added to a solution of the crude amine, 7-dimethylamino-4-coumarinacetic acid (31 mg, 0.13 mmol), and EtN^{*i*}Pr₂ (55 µL, 0.31 mmol) in anhydrous DMF (1.5 mL). The reaction was allowed to stir for 16 h and then dried. Remaining HATU was precipitated with MeOH and removed via filtration. The crude product was subjected to flash chromatography (2:1 hexanes/EtOAc to 1:5 MeOH/EtOAc) with 2, eluting with 1:10 MeOH/EtOAc, collected as a yellow wax (45 mg, 67% yield). ¹H NMR (acetone- d_6 , 500 MHz) δ : 9.44 (s, 2H); 8.99 (d, 1H, J = 11.3Hz); 8.94 (bm, 1H); 8.00 (bm, 1H); 7.91 (dd, 1H, J = 3.2, 11.2 Hz); 7.72 (d, 1H, J = 3.2Hz); 7.01 (s, 1H); 6.50 (s, 1H); 4.35 (m, 2H); 4.21 (dt, 1H, J = 8.0, 8.0, 16.1 Hz); 4.06 (s, 2H); 3.70 (m, 2H); 3.59 (m, 1H); 3.51 (m, 2H); 3.39 (m, 1H); 3.34 (s, 2H); 2.90 (s, 6H); 2.61-2.42 (m, 3H); 2.33 (ddd, 1H, J = 3.0, 5.0, 18.1 Hz); 2.26-2.17 (m, 2H); 2.09-1.97 (m, 1H); 1.95-1.78 (m, 3H); 1.62-1.42 (m, 4H); 1.41-1.22 (m, 2H); 1.28 (s, 3H); 1.27 (s, 3H); 1.24 (d, 3H, J = 9.1 Hz); 1.17-1.04 (m, 4H); 1.01 (s, 3H);0.90-0.63 (m, 4H); 0.35 (s, 3H). HR-ESI-MS (m/z): Calcd for C₃₇H₅₀N₃O₅ [M + H], 616.3672; Found 616.3618.

t-butyl 4-((*R*)-4-((3*R*,5*S*,7*R*,8*R*,9*S*,10*S*,12*S*,13*R*,14*S*,17*R*)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[α]phenanthren-17yl)pentanamido)butylcarbamate (11). HATU (175 mg, 0.46 mmol) was added to a solution of cholic acid (100 mg, 0.24 mmol), *N*-boc-1,4butanediamine (95 mL, 0.49 mmol), and Et₃N (0.15 mL, 1.1 mmol) in anhydrous DMF (1.5 mL). The reaction was allowed to stir for 16 h, then diluted with deionized H₂O (20 mL) and extracted with EtOAc (20 mL). The organics were washed three times with deionized H₂O (15 mL), dried over MgSO₄, and concentrated *in vacuo*. Any remaining HATU was precipitated with CH₂Cl₂ and removed via filtration. Compound **11** (114 mg) was obtained as a clear oil, 80% yield. ¹H NMR (CDCl₃, 500 MHz) δ : 6.58 (br s, 1H); 4.92 (br s, 1H); 3.90 (s, 1H); 3.78 (s, 1H); 3.41 (s, 9H); 3.17 (br d, 2H, *J* = 5.4 Hz); 3.06 (br d, 2H, *J* = 4.6 Hz); 2.27 (br s, 2H); 2.15 (t, 2H, *J* = 13.2 Hz); 1.14 (m, 1H); 1.88-1.75 (m, 2H); 1.70 (t, 3H, *J* = 13.7 Hz); 1.65-1.49 (m, 2H); 1.47 (br s, 6H); 1.38 (s, 12H); 1.2 (m, 1H); 1.02 (m, 1H); 0.94 (d, 3H, *J* = 5.5 Hz); 0.83 (s, 3H); 0.62 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ : 174.5; 156.3; 79.1; 73.1; 71.8; 68.4; 50.4; 46.3; 41.5; 41.3; 40.1; 39.5; 39.3; 39.0; 35.3; 35.2; 34.7; 34.6; 32.9; 31.7; 30.2; 28.3 (3C); 28.0; 27.5; 27.4; 26.6; 26.2; 23.2; 22.3; 17.4; 12.4. HR-ESI-MS (*m*/*z*): Calcd for C₃₃H₅₈N₂O₆Na [M + Na], 601.4192; Found 601.4176.

(R)-N-(4-(2-(7-(dimethylamino)-2-oxo-2H-chromen-4-yl)acetamido)butyl)-4-((3R,5S,7R,8R, 9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta-[a]phenanthren-17-yl)pentanamide (3). Intermediate 11 (55 mg, 0.095 mmol) was dissolved in CH₂Cl₂ (1 mL). Trifluoroacetic acid (0.020 mL, 0.285 mmol) was added dropwise and the reaction was allowed to stir at room temperature for 1 h. The reaction was then diluted with CH₂Cl₂ (10 mL) and washed with deionized H₂O (10 mL). The organic layer was concentrated in vacuo, and crude amine was used without further purification. HATU (63 mg, 0.167 mmol) was added to a solution of the crude amine, 7dimethylamino-4-coumarinacetic acid (21 mg, 0.084 mmol), and Et₃N (0.035 mL, 0.25 mmol) in anhydrous DMF (1.5 mL). The reaction was allowed to stir for 16 h, then diluted with deionized H₂O (25 mL) and extracted with EtOAc (25 mL). The organics were washed 3× with deionized H₂O (20 mL), dried over MgSO₄, and concentrated in vacuo. Remaining HATU was precipitated with MeOH and removed via filtration. The organics were subjected to reversed-phase HPLC, and 2, eluting with 58% aqueous acetonitrile, was collected as a yellow powder (35 mg, 52% yield). ¹H NMR (CDCl₃, 500 MHz) d: 7.49 (d, 1H, J = 9.0 Hz); 7.00 (t, 1H, J = 5.2 Hz); 6.57 (dd, 1H, J = 9.0, 2.4 Hz); 6.45 (t, 1H, J = 5.2Hz); 6.39 (d, 1H, J = 2.4 Hz); 6.05 (s, 1H); 3.92 (br m, 1H); 3.8 (br s, 1H); 3.61 (s, 2H); 3.46 (d, 1H, J =5.5 Hz); 3.40 (br m, 1H); 3.25-3.10 (m, 4H); 3.00 (s, 6H); 2.65 (s, 1H); 2.18 (t, 2H, J = 11.7 Hz); 2.10-1.95 (m, 4H); 1.79 (m, 2H); 1.82-1.53 (m, 8H); 1.48 (br m, 9H); 1.36 (m, 2H); 1.21 (m, 1H); 1.07 (m, 1H); 0.96 (d, 3H, J = 5.8 Hz); 0.85 (s, 3H); 0.63 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) d: 174.5; 168.5; 162.3; 155.9; 153.0; 150.7; 125.9; 109.9; 109.2; 108.6; 98.0; 73.0; 71.9; 68.4; 46.4; 46.2; 41.8; 41.5; 40.3; 40.1 (3C); 39.7; 39.6; 39.5; 38.9; 35.3; 34.7 (2C); 32.7; 31.7; 30.5; 28.2; 27.6; 27.0; 26.4; 26.3; 23.2; 22.5; 17.5; 12.5. HR-ESI-MS (m/z): Calcd for C₄₁H₆₂N₃O₇ [M + H], 708.4582; Found 708.4583.

(*R*)-*N*-(4-(2-(7-(dimethylamino)-2-oxo-2H-chromen-4-yl)acetamido)butyl)-4-((3*R*,5*S*,7*R*,8*R*, 9*S*,10*S*,12*S*,13*R*,14*S*,17*R*)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta-[a]phenanthren-17-yl)pentanamide (4). HATU (157 mg, 0.41 mmol) was added to a mixture of 3keto-4-etiocholenic acid 9 (65 mg, 0.021 mmol), and EtN^iPr_2 (108 µL, 0.62 mmol) in anhydrous DMF (5 mL). The reaction was allowed to stir for 12 h at rt and then dried under vacuum. Compound 4 (84 mg) was obtained as a clear wax, 94% yield after flash chromatography (2:1 hexanes/EtOAc to 1:10 MeOH/EtOAc). ¹H-NMR (CDCl₃, 500 MHz) δ : 8.70 (d, 1H, *J* = 4.5 Hz); 8.40 (d, 1H J = 8.4 Hz); 7.48 (dd, 1H, *J* = 4.5, 8.4 Hz); 5.73 (s, 1H); 4.09 (dd, 1J, *J* = 7.1, 7.1 Hz); 2.89 (t, 1H, *J* = 9.3 Hz); 2.49-2.16 (m, 6H); 2.14-2.03 (m, 2H); 1.95-1.77 (m, 5H); 1.76-1.37 (m, 2H); 1.35-1.22 (m, 1H); 1.21 (s, 3H); 1.18-1.00 (m, 2H); 1.00 (s, 3H). ¹³C-NMR (CDCl₃, 125 MHz) δ : 199.7; 170.8; 170.2; 151.8; 140.8; 135.2; 129.7; 124.3; 121; 60.6; 55.8; 53.8; 52.9; 45.6; 38.8; 38; 36.1; 36; 34.2; 32.9; 32.1; 24.8; 24.2; 21.3; 17.6; 14.4; 13.8. HR-ESI-MS (*m/z*): Calcd for C₂₅H₃₁N₄O₃ [M + H], 435.2318; Found 435.2389.