Supporting Information

M. E. Cates *, D. Marenduzzo * , |. Pagonabarraga ', J. Tailleur *

*SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK, and T Departament de Fisica Fonamental, Universitat de Barcelona

- Carrer Marti Franqués 1, 08028-Barcelona, Spain

Submitted to Proceedings of the National Academy of Sciences of the United States of America

We show here how to derive the amplitude equation [8]
in main text. Let us start from the dimensionless equa-
tion of motion (Eq. [6] in main text)

@ = V[Re *®"(1 — du)Vu] + u(l —u) — V'u  [1]

and recall the two conditions for patterning (Eq. [7] in main
text):

® > 1; Rexp(—2®)(® —1) > 2 [2]

To analyse precisely the transition, we derive below the
steady-state limit of the amplitude equation in 1D. By in-
spection one sees that the unperturbed steady-state of [1] is
given by u = 1. To characterise the amplitude of the pertur-
bation around u = 1, we introduce v = 1 + w/® so that w
evolves with

W= —dy[Re *T(®—1)(1+

Ye 2 9, w] —w(1+ %) — 0w

d—-1
(3]
We are interested by the vicinity of the transition where
Re™*(®—1) =2(1 +¢) [4]
for € > 0 and small. The dynamics now reads
W= Lw — 2ed2w + g(w) [5]

where £ = —(1 + 92)? is the linear part of the evolution op-
erator at the transition, 2¢02w gives an extra linear part due
to the perturbation (e > 0) and g(w) is the non-linear part:

,w2

g(w) = -3 — 0 [2(1 +O((1+ gog)e ™ - 1)azw] (6]

Amplitude equation

As usual with the amplitude equation approach, we expand
w in power series of the perturbation € and study Eq. [5]
order by order. As shown below (Egs [21-23]), the correct
expansion is

w=Upe"? + Ure + Use®? + . .. [7]

Expanding [6] to the order €*/? and substituting in [5]
yields order by order:

—LUs = 0 (8]
—LU —%JQ — 3(1)_72?85% [9]
—LU; = —20;Up— ZU(IO)Ul —~ ?’q)_f(ll’za;‘;UoU1 [10]

Equation [8] can be easily solved and yields
Up = Ae'™ 4+ A%e™™ [11]

The amplitude of the perturbation we are trying to derive is
thus 2|A|. Equation [9] can also be solved directly:

Ui = Be'” + B*e " + C + De** + D*e > [12]
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where B can de determined from higher order equations (but
does not interest us here), and C and D are given by

D )

2|A)? A?
- ; D=—
¢ -1 P

C===3 =5

as can be checked by direct substitution in Eq. [9]. Equation
[10] does not always have a solution. Indeed, the application
of £ to any function Uz cannot yield a multiple of e**, (since
Le*® = 0 and L is linear). The r.h.s. however does contain a
multiple of e** whose prefactor must thus vanish. This gives
a condition for the expansion to provide a proper steady-state
solution of the problem. Let us summarize the contributions
of the different terms to the prefactor of ¢’ in the r.h.s of
Eq. [10]

—202U yields 24 [14]

. ,(3-20 1
yields 24|A| (@_1 75) [15]
1, 3—20 1 2
T 1 33

3-29
® -1

2
( 20, — E)U()Ul

—é¢)7285U3

. b -2 2

The sum of these terms vanishes only if

A(9¢2(@ C1)% 42| A2 (340 — 560° — 2407 + 310 + 19)) =0

[17]
and thus either
992(1 — ®)?
A=0; AP = ,
Pooor M= SEieT 5600 — 2407 1 310 1 19)
(18]
Finally, the first order in the amplitude equation yields
w(x) = 2|A|v/ecos(x — o) [19]

where zo is a constant. Note that by construction |A|*> > 0
and a non-zero solution only exists for ® € [1.08439,1.59237].
For these values of ®, Eq. [18] and [19] work very well,
as can be checked in figure 1. Outside this range the transi-
tion becomes subcritical and the standard approach does not
work anymore. Alternative treatments have been proposed
but are not as reliable (see ref [20] in main text for more de-
tails). Interestingly, we see that the order of the transition
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Fig. 1. We simulated equation [1] for systems of size L = 400 with periodic boundary conditions, using several values of @ (From left to right, top to bottom,
® =1.06; 1.07; 1.12; 1.2; 1.35; 1.5; 1.7; 1.95; 2.5). The steady-state w(z) was then decomposed in Fourier series w(z) = ag + 25/2 an cos(2mnz/L) +
bn Sin(?ﬂ'nac/L), where N is the number of data points and the cut-off when n — 00 is given by the Nyquist frequency. The blue points correspond to the amplitude of

the largest mode: wg = maxy /a2 + b2. When the transition is continuous, we compare these points with the results of the amplitude equation wq = 21/€| A, where
| A is solution of [18] (red lines) and the agreement is excellent. For ® > 1.58 or ® < 1.08, the transition is clearly discontinuous.

and the amplitude of the perturbation depends on how non-
linear terms in g(w) balance the linear growth term —2e0%w
in [5]. Since the former depends on the non-linear relation
v(p), we do not expect equation [18] to be generic, as op-
posed to the stability analysis which can be expressed solely
in terms of De(po) and its derivative.

What is the correct expansion?

In [7], we expanded w in power series of /€, thus assuming
that the amplitude is an analytic function of \/e. One could
look for a more general expansion:

w = Upe® + U1e2% + Uge™® [20]

In this case, the expansion of equation [5] yields two power
series: 3 Rpe®® and 3. Wre* 1. For the two series to give
terms that can balance each-other, one needs o + 1 = ka for

k > 2 and thus )

R —
The candidates for « are thus 1; 1/2; 1/3; .... Note that
a < 1 implies 2a + 1 > 3a. We can therefore stop the ex-

[21]

2 ‘ www.pnas.org/cgi/doi/10.1073/pnas.0709640104

pansion at 3a and 2a + 1 to get the first three terms in the
expansion of equation [5]

Let us first try o = 1. The order by order the expansion
yields

LUy = 0, O(e)

_g§_3—2¢

P d—-1

[22]

LU, = B2UE — 202U,

O(2¢) [23]

Equation [22] yields Uy = Ae'*® + A*e™"** but equation [23]
cannot be solved since there is a non-zero multiple of e*** on
the r.h.s. (—2082Uy) which cannot result from the application
of L? to any function. Thus a = 1 is not an option.

For a < 1/3, then a« + 1 > 1 > 3a. There is thus no con-
tribution of —2ed2w to the first three orders in the expansion
of [5]. In particular, the two first order are still given by [8]
and [9], whereas the third order is given by [10] without the
term linear in Up. This means that the contribution [14] is
not present and the prefactor of ¢*** in the r.h.s. of [10] only
contains multiples of |A|>A. The resolvability condition [17]
is thus of the form A|A|* f(®) = 0 which implies |A| = 0. The
only expansion which yields a result is thus for a = 1/2.
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