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We show here how to derive the amplitude equation [8]
in main text. Let us start from the dimensionless equa-

tion of motion (Eq. [6] in main text)

u̇ = ∇[Re−2Φu(1− Φu)∇u] + u(1− u)−∇4u [1]

and recall the two conditions for patterning (Eq. [7] in main
text):

Φ > 1; R exp(−2Φ)(Φ− 1) > 2 [2]

To analyse precisely the transition, we derive below the
steady-state limit of the amplitude equation in 1D. By in-
spection one sees that the unperturbed steady-state of [1] is
given by u = 1. To characterise the amplitude of the pertur-
bation around u = 1, we introduce u = 1 + w/Φ so that w
evolves with

ẇ = −∂x[Re−2Φ(Φ−1)(1+
w

Φ− 1
)e−2w∂xw]−w(1+

w

Φ
)−∂4

xw

[3]
We are interested by the vicinity of the transition where

Re−2Φ(Φ− 1) = 2(1 + ε) [4]

for ε > 0 and small. The dynamics now reads

ẇ = Lw − 2ε∂2
xw + g(w) [5]

where L = −(1 + ∂2
x)2 is the linear part of the evolution op-

erator at the transition, 2ε∂2
xw gives an extra linear part due

to the perturbation (ε > 0) and g(w) is the non-linear part:

g(w) = −w2

Φ
− ∂x

h
2(1 + ε)

`
(1 +

w

Φ− 1
)e−2w − 1

´
∂xw

i
[6]

Amplitude equation
As usual with the amplitude equation approach, we expand
w in power series of the perturbation ε and study Eq. [5]
order by order. As shown below (Eqs [21-23]), the correct
expansion is

w = U0ε
1/2 + U1ε + U2ε

3/2 + . . . [7]

Expanding [6] to the order ε3/2 and substituting in [5]
yields order by order:

−LU0 = 0 [8]

−LU1 = −U2
0

Φ
− 3− 2Φ

Φ− 1
∂2

xU2
0 [9]

−LU2 = −2∂2
xU0 −

2U0U1

Φ
− 3− 2Φ

Φ− 1
2∂2

xU0U1 [10]

−4

3

Φ− 2

Φ− 1
∂2

xU3
0

Equation [8] can be easily solved and yields

U0 = Aeix + A∗e−ix [11]

The amplitude of the perturbation we are trying to derive is
thus 2|A|. Equation [9] can also be solved directly:

U1 = Beix + B∗e−ix + C + De2ix + D∗e−2ix [12]

where B can de determined from higher order equations (but
does not interest us here), and C and D are given by

C = −2|A|2

Φ
; D =

A2

9
(4

3− 2Φ

Φ− 1
− 1

Φ
) [13]

as can be checked by direct substitution in Eq. [9]. Equation
[10] does not always have a solution. Indeed, the application
of L to any function U2 cannot yield a multiple of eix, (since
Leix = 0 and L is linear). The r.h.s. however does contain a
multiple of eix whose prefactor must thus vanish. This gives
a condition for the expansion to provide a proper steady-state
solution of the problem. Let us summarize the contributions
of the different terms to the prefactor of eix in the r.h.s of
Eq. [10]

−2∂2
xU0 yields 2A [14]

(
3− 2Φ

Φ− 1
2∂x −

2

Φ
)U0U1 yields 2A|A|2

“3− 2Φ

Φ− 1
− 1

Φ

”
[15]

×
“1

9
(4

3− 2Φ

Φ− 1
− 1

Φ
)− 2

Φ

”
−4

3

Φ− 2

Φ− 1
∂2

xU3
0 yields 4

Φ− 2

Φ− 1
A|A|2 [16]

The sum of these terms vanishes only if

A
“
9Φ2(Φ− 1)2 +2|A|2(34Φ4− 56Φ3− 24Φ2 +31Φ+19)

”
= 0

[17]
and thus either

A = 0; or |A|2 =
9Φ2(1− Φ)2

2(34Φ4 − 56Φ3 − 24Φ2 + 31Φ + 19)
[18]

Finally, the first order in the amplitude equation yields

w(x) = 2|A|
√

ε cos(x− x0) [19]

where x0 is a constant. Note that by construction |A|2 > 0
and a non-zero solution only exists for Φ ∈ [1.08439, 1.59237].
For these values of Φ, Eq. [18] and [19] work very well,
as can be checked in figure 1. Outside this range the transi-
tion becomes subcritical and the standard approach does not
work anymore. Alternative treatments have been proposed
but are not as reliable (see ref [20] in main text for more de-
tails). Interestingly, we see that the order of the transition
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Fig. 1. We simulated equation [1 ] for systems of size L = 400 with periodic boundary conditions, using several values of Φ (From left to right, top to bottom,

Φ = 1.06; 1.07; 1.12; 1.2; 1.35; 1.5; 1.7; 1.95; 2.5). The steady-state w(x) was then decomposed in Fourier series w(x) = a0 +
PN/2

n an cos(2πnx/L) +
bn sin(2πnx/L), where N is the number of data points and the cut-off when n →∞ is given by the Nyquist frequency. The blue points correspond to the amplitude of

the largest mode: wq = maxn

p
a2

n + b2n. When the transition is continuous, we compare these points with the results of the amplitude equation wq = 2
√

ε|A|, where

|A| is solution of [18] (red lines) and the agreement is excellent. For Φ > 1.58 or Φ < 1.08, the transition is clearly discontinuous.

and the amplitude of the perturbation depends on how non-
linear terms in g(w) balance the linear growth term −2ε∂2

xw
in [5]. Since the former depends on the non-linear relation
v(ρ), we do not expect equation [18] to be generic, as op-
posed to the stability analysis which can be expressed solely
in terms of De(ρ0) and its derivative.

What is the correct expansion?
In [7], we expanded w in power series of

√
ε, thus assuming

that the amplitude is an analytic function of
√

ε. One could
look for a more general expansion:

w = U0ε
α + U1ε

2α + U2ε
3α [20]

In this case, the expansion of equation [5] yields two power
series:

P
Rkεαk and

P
Wkεαk+1. For the two series to give

terms that can balance each-other, one needs α + 1 = kα for
k ≥ 2 and thus

α =
1

k − 1
[21]

The candidates for α are thus 1; 1/2; 1/3; . . . . Note that
α ≤ 1 implies 2α + 1 ≥ 3α. We can therefore stop the ex-

pansion at 3α and 2α + 1 to get the first three terms in the
expansion of equation [5]

Let us first try α = 1. The order by order the expansion
yields

L2U0 = 0, O(ε) [22]

L2U1 = −U2
0

Φ
− 3− 2Φ

Φ− 1
∂2

xU2
0 − 2∂2

xU0, O(2ε) [23]

Equation [22] yields U0 = Aeikx+A∗e−ikx but equation [23]
cannot be solved since there is a non-zero multiple of eikx on
the r.h.s. (−2∂2

xU0) which cannot result from the application
of L2 to any function. Thus α = 1 is not an option.

For α ≤ 1/3, then α + 1 > 1 ≥ 3α. There is thus no con-
tribution of −2ε∂2

xw to the first three orders in the expansion
of [5]. In particular, the two first order are still given by [8]
and [9], whereas the third order is given by [10] without the
term linear in U0. This means that the contribution [14] is
not present and the prefactor of eikx in the r.h.s. of [10] only
contains multiples of |A|2A. The resolvability condition [17]
is thus of the form A|A|2 f(Φ) = 0 which implies |A| = 0. The
only expansion which yields a result is thus for α = 1/2.
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