			В.	В.		
	B. theta	B. caccae	vulgatus	uniformis	B. fragilis	B. ovatus
Glucose	1.3	4.8	2.8	2.0	1.5	1.4
Fructose	1.2	13.5	3.2	2.1	1.8	1.9
Sucrose	1.6	1.4	2.4	2.1	2.1	1.3
Levan	2.7	-	-	-	-	-
FOS	5.6	2.1	3.0	2.8	2.0	1.4
Inulin	96	2.7	-	3.9	9.9	2.2

Table S1, related to Figures 2, 4-6. Doubling times¹ for bacterial strains used in the study.

		BT∆1754:		BT∆1760:		BT∆1762:
	BT∆1754	BT1754	BT ∆1760	BT1760	BT ∆1762	BT1762
Glucose	2.6	2.6	2.9	3.4	2.1	ND
Fructose	11.8	2.5	2.6	2.1	1.9	ND
Sucrose	8.3	3.1	3.2	ND	2.5	ND
Levan	-	2.1	-	3.6	19.2	8.9
FOS	-	3.0	5.8	ND	3.8	3.5
Inulin	-	-	-	-	-	-

¹Doubling times in hours of the Bacteroides species (top table) and the *B. thetaiotaomicron* mutants (bottom table) in minimal media containing a single carbon source. Doubling times were calculated using the KinetiCalc software (F. Breidt, 1994). ND : not determined, - : no growth.

Table S2, related to Figure 4. Kinetic parameters of *Bacteroides thetaiotaomicron* GH32 enzymes against β2-6 and β2-1 fructans and

rructooligosaccr	larides											
Enzyme		1759			1760			1765			3082	
	kcat	, ™	kcat/	kcat	K ∾	kcat/	kcat	К _M	kcat/	kcat	⊼ ∾	kcat/
	(min ⁻¹)	(MM)	⊼ ∾	(min ⁻¹)	(MM)	⊼ ∾	(min ⁻¹)	(MM)	R M	(min ⁻¹)	(MM)	⊼ ∾
			(min ⁻¹			(min ⁻¹			(min ⁻¹			(min ⁻¹
			mM ⁻¹)			mM ⁻¹)			mM ⁻¹)			mM ⁻¹)
Sucrose	816	7.8	104	NA^{a}			27087	2.2	11286	1421	2.4	592
	±136	±1.2					±3782	±0.7		±35	±0.2	
Kestose	379	2.7	140	AN	,	,	3329	11.8	282	2004	0.9	2227
	±75	±0.8					±922	±3.0		±204	±0.0	
Kestotetraose	706	0.9	784	AN			3829	5.1	751	1365	0.7	1950
	±125	±0.1					±684	±2.1		±159	±0.1	
Kestopentaose	545	1.2	454	AN		ı	4437	9.0	456	1910	1.0	1910
	±45	±0.1					±263	±0.0		±412	±0.5	
Inulin	156	$0.3^{\rm b}$	520	AN			~1235	>30 ^b		1013	0.6 ^b	1688
	±63	±0.1								±119	±0.1	
Levanbiose	1052	6.0	175	ND°	,	ı	9330	8.8	1060	2184	5.3	412
	±209	±0.3					±1509	±0.6		±250	±0.5	
Levantriose	594	7.3	81	DN	,	ı	1857	9.3	200	1600	5.6	286
	±129	±0.6					±67	±0.3		±281	±0.8	
Levantetraose	762	3.0	254	DN	,	ı	2696	18.8	143	1841	5.6	329
	±175	±1.7					±181	±1.5		±192	±0.4	
Levanpentaose	737	3.0	246	DN		ı	4043	34.7	116	1881	5.4	348
	±74	±1.6					±272	±0.4		±110	±0.4	
Levan	205	1.0mg/ml	205	32987	10.6mg/ml	3112	~288	>100mg/ml	,	834	1.4mg/ml	596
	±47	±0.3	(min ⁻¹	±9383	±1.6	(min ⁻¹				±95	±0.3	(min ⁻¹
			mg/ml ⁻¹)			mg/ml ⁻¹)						mg/ml ⁻¹)
Values shown are	the mean	and SD of a	t least 3 inc	dependent a	issays for eac	h enzyme/s	ubstrate p	air.				

Kestoligosaccharides are β2-1 linked fructose with a terminal non-reducing glucose. Levanoligosaccharides are β2-6 linked fructose with no terminal glucose moiety. ^aNA - No activity detected. ^bMM K_M for inulin based on average MW of ~4000 (Sigma; Chicory, Cat. no. 12255).

Table S3. List of primers used in this study.

Quantitative RT-PCR

BT1754_forward BT1754_reverse BT1757_forward BT1757_reverse BT1763_forward BT1765_reverse BT1765_forward BT1765_reverse BT3082_forward BT3082_reverse BT3305_forward

CGCAATCTGATCGATTCTCA ACACGGCTTAGTCCCATGTC GTCTTTCAAACGCTGCAACA GAGCTTCGGGAACAGACTTG ATGCCTGGTCACCTACGAAC CAAGCGGTCCATTCTCATTT AGACCTGATGCATTGGGAAC CCATTTACTCTCCGGTGCAT CACCGAACTGACTTTGCGTA CGTGGCATGAGAGAGTTTGA CGGTGGGGACAAAGTATCAC AAAGTCTTTCCCGCACTGAA

Quantitative PCR

<i>B. theta</i> _forward	GGGGGTATCTTCACCTTCGT
<i>B. theta</i> _reverse	ATTCGGTTGAACGCTTGTCT
<i>B. caccae_</i> forward	CAGCCGCTACTTTGAAGCTC
<i>B. caccae</i> _reverse	TTGACGGAGGCAAAAATAGG
<i>B. vulgatus</i> _forward	TAGAGATCCGCCTCGTGTCT
<i>B. vulgatus</i> _reverse	TCCAAACGAGGAAGCCATAC

B. theta mutant generation

BT∆1754

BTA1754_1000up AAAAGGATCCACCGGAAAAGTGGAAAGTGA BTA1754_750up AAAAGGATCCACTTTTGCTGAAAGCGGAGA BTA1754 700up AAAAGGATCCTCCATGTCTCATTTGCCAAC BT Δ 1754 sewing forward BTA1754_1000dwn AAAATCTAGATGGCATTGTTGCTGTGCTAT BTA1754 750dwn AAAATCTAGAACACTTCCGTGCACTTCAGA BTA1754_700dwn AAAATCTAGATCTGCTCTTTTTGGGGGAATTT BT_{\[]}1754_sewing_reverse GGATTACAGAAAGAACTATGAAATGTAATTTCATTGATATCGTAAAGAGG

BT∆1754:BT1754

 $BT\Delta 1754:BT1754_forward BT\Delta 1754:BT1754_reverse$

BT∆1760

 $BT\Delta 1760_1000 up \\ BT\Delta 1760_750 up \\ BT\Delta 1760_700 up \\ BT\Delta 1760_sewing_forward \\ BT\Delta 1760_1000 dwn \\ BT\Delta 1760_750 dwn \\ BT\Delta 1760_700 dwn \\ BT\Delta 1$

AAAATCTAGAATCATTCAGTTTTCTGTTGGTTACTT AAAAGGATCCTTAAAATCCGATGTTAAGTCCGAA

BT_{\[]}1760_sewing_reverse

BT∆1760:BT1760	
BT Δ 1760:BT1760_forward	AAAATCTAGACCGGAGTTCTCAGGATTCC
BTA1760:BT1760_sewing_reverse	CTATAGGTAAGATCATATTTTCATCATAGGATATTCAGAGTTATACTAGTG
BTA1760:BT1760_sewing_forward	CACTAGTATAACTCTGAATATCCTATGATGAAAAATATGATCTTACCTATAG
BT∆1760:BT1760_reverse	AAAAGGATCCTCAATAAGTGCTTACCTGAACGT
BTA1762	
BTA1762_1000up	AAAAGGATCCCGGTATCGACTTCAGCCTGTT
BT∆1762_750up	AAAAGGATCCGAATTGCCGGAAACGGTAGC
BT∆1762_700up	AAAAGGATCCGAAGAGTGTAGTCGGACATAC
$BT\Delta 1762_sewing_forward$	CTTCATCAATAAAACGAATGATCATGTAACTAACCATCTTAAAACAAAGAATA
BT∆1762_1000dwn	TATTCTTTGTTTTAAGATGGTTAGTTACATGATCATTCGTTTTATTGATGAAG
BT∆1762_750dwn	AAAATCTAGAAGATATATTCGGACATCGATACATT
BT∆1762_700dwn	AAAATCTAGAGGGACTCGTCAGAAGACTG
$BT\Delta 1762_sewing_reverse$	TATTCTTTGTTTTAAGATGGTTAGTTACATGATCATTCGTTTTATTGATGAAG
BT∆1762:BT1762	
BT ₀₁₇₆₂ :BT1762_forward	AAAATCTAGAATCATTCAGTTTTCTGTTGGTTACTT
BTA1762:BT1762_sewing_reverse	CGATTGTTGCTATATATATTATCTTTTCATTAGTTTAATGTTATTAATTTAAAAGTAC
BTA1762:BT1762_sewing_forward	CGTACTTTTAAATTAATAACATTAAACTAATGAAAAAGATAATATATAT
BT ₀ 1762:BT1762_reverse	AAAAGGATCCTTACCAACCGAAATTCTGTGTAT
BTA1763	
BT∆1763_1000up	AAAAGGATCCATAGACCGACTACGGGAGCA
BT∆1763_750up	AAAAGGATCCGCATTAAAATCCGGCCAATA
BT∆1763_700up	AAAAGGATCCCGCACCGATTTGAAAATACA
BT $\Delta 1763$ _sewing_forward	CATTCGTTTTATTGATGAAGTAAGTTACATTAGTTTAATGTTATTAATTTAAAAGTA
BT∆1763_1000dwn	AAAATCTAGACAGTATCTGCGGAGTGGTCA
BT∆1763_750dwn	AAAATCTAGACTTCGTTGATTCCGGTAAGG
BT∆1763_700dwn	AAAATCTAGATTTTTGCAAGGTAAGCAGCA
BT Δ 1763_sewing_reverse	ΤΑCTTTTAAATTAATAACATTAAACTAATGTAACTTACTTCATCAATAAAACGAATG
BT(In+)	
BCexch_BT1763_forward	AAAAGCGGCCGCATCATTCAGTTTTCTGTTGGTTACTT
D000707	

BCexch_BT1763_forward BC02727_reverse BC02728-BC02731_forward BC02728-BC02731_reverse BC_BT1763_sewing_reverse BC_BT1763_sewing_forward AAAAGCGGCCGCATCATTCAGTTTTCTGTTGGTTACTT AAAATCTAGAAATGTTCTGTATTTAGGATAAAAGATTAAA AAAATCTAGAATGAAATTGAAATATATCCTTGCGG AAAAGGATCCTTATTGCTTCAACCGGTAGACG TTTTGTTCTTCATAATACTGAGCATTAGTTTAATGTTATTAATTTAAAAG CTTTTAAATTAATAACATTAAACTAATGCTCAGTATTATGAAGAACAAAA

TGTAAATAAAAAGAATAAGCAACAATGTGATGAAAAACTACACCGGCAAG

Amplification of fructan PUL genes for expression¹

BT1754-PD_F	CTC CCATGG ATGATACACCCCATTTTCGTATTG
BT1754-PD_R	CCG CTCGAG GACCTGTTGTGTAGCTAC
BT1759_F	CTC CATGG ATGCGGATTCTCCTTTGC

BT1759_R	CCG CTCGAG TTTCTTCAGTTTGTAAACC			
BT1760_F	CTC CCATGG ATAGTGACGAGACTGAC			
BT1760_R	CCG CTCGAG ATAAGTGCTTACCTG			
BT1765_F	CTC CCATGG ATAAAACAACTCCTTGGATAAAAC			
BT1765_R	CCG CTCGAG TAAACCTAATCTATACACAC			
BT3082_F	CTC GGATCC GGAGAAGTATCTTTTAAAATAACCAAGC			
BT3082_R	CTC GAATTC CTACCAAATGGATTCTACGGAAAAGAC			
BT1761 F				
BT1761 R				
BT1762_F	CTC GGATCC GACGATTTTTTGGACCGTCAGGTTCC			
BT1762_R	CTC GAATTC TTACCAACCGAAATTCTGTGTATAATTTCC			
¹ All GH32 enzymes (except BT1765), BT1754-PD, BT1761 and BT1762 were expressed without their				
predicted endogenous signal pept	ides (http://www.cbs.dtu.dk/services/SignalP/ and			
http://www.cbs.dtu.dk/services/Lip	oP/). BT1754-PD, BT1759, BT1760 and BT1765 were cloned into			
pET22 or pET28 (Novagen) such	that the recombinant protein contained a C-terminal His ₆ tag.			
3T1761, BT1762 and BT3082 were cloned into pRSETA (Invitrogen) encoding an N-terminal His ₆				

tag. Restriction sites introduced for cloning are highlighted.

Table S4, related to Figure 3. X-ray diffraction data collection and refinement statistics for BT1754-PD.

Data collection	
Space group	P 65
Cell dimensions	a=b=111.84, c=115.171
Resolution Range (Å)	37-2.64 (2.78-2.64) ^a
No. of unique reflections	23919 (3512)
Completeness (%)	99.7 (99.7)
Redundancy	5.9 (6.0)
Rmerge	0.10 (0.35)
Mean I/(s)I	12.4 (5.6)
Refinement	
Resolution	35.7-2.64 (2.70-2.64)
Rwork	18.6 (22.8)
Rfree	23.1 (28.6)
No. non-H atoms	4741
Protein	4596
Ligand	24
Water/ion	121
Mean B, all atoms (Å ²)	36.2
Protein	36.1
Ligand	25
Water/ion	39.5
Rmsd B values (Å ²) (m.c./s.c.)	0.5/1.1
No. Ramachandran outliers	2
Rmsd bond lengths (Å)	0.010
Rmsd bond angles (°)	1.3

^a Values in parentheses refer to values in the highest resolution shell

Supplemental Data References

- Bolam, D.N., Xie, H., Pell, G., Hogg, D., Galbraith, G., Henrissat, B., and Gilbert, H.J. (2004). X4 modules represent a new family of carbohydrate-binding modules that display novel properties. The Journal of biological chemistry *279*, 22953-22963.
- Cho, K.H., and Salyers, A.A. (2001). Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. Journal of bacteriology *183*, 7224-7230.
- F. Breidt, T.L.R., H.P. Fleming (1994). A Rapid Method for the Determination of Bacterial Growth Kinetics. Journal of Rapid Methods & Automation in Microbiology *3*, 59-68.
- Juncker, A.S., Willenbrock, H., Von Heijne, G., Brunak, S., Nielsen, H., and Krogh, A. (2003). Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci *12*, 1652-1662.
- Letunic, I., Doerks, T., and Bork, P. (2009). SMART 6: recent updates and new developments. Nucleic acids research 37, D229-232.
- Martens, E.C., Chiang, H.C., and Gordon, J.I. (2008). Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell host & microbe *4*, 447-457.