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Generalized Multiparticle Mie Theory.We use the rigorous General-
ized Mie Theory (GMT) approach (also called the rigorous the-
ory of multipole expansions) (1–5) to provide a support and
interpretation of our experimental data. Although the application
domain of GMT is restricted to spherical scatterers, it yields the
analytical solution of the scattering problem and results in highly
efficient algorithms. In the frame of GMTapproach, the electro-
magnetic field in a photonic structure of L nanoparticles can be
constructed as a superposition of partial fields scattered from
each particle. These partial scattered fields as well as the incident
field and internal fields are expanded in the orthogonal basis
of vector spherical harmonics represented in local coordinate
systems associated with individual particles:
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The use of the powerful addition (translation) theorem for vector
spherical harmonics enables the transformation (translation) of
the series expansion for the partial fields of the l-th particle into
an expansion in the local coordinate system associated with any
other particle of the array. A general matrix equation for the
Lorenz-Mie multipole scattering coefficients ðalmn;blmnÞ can be
obtained by imposing the electromagnetic boundary conditions
for the tangential components of the electric and magnetic fields
and by truncating the infinite series expansions to a maximum
multipolar order N:
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Here, Ajl
mnμν, Bjl

mnμν are the translation matrices, which only
depend on the distance and direction of translation from origin
l to origin j (1–4), ~aln, ~b

l
n are the Mie scattering coefficients of l-th

sphere in the free space (5); and plmn, qlmn are the expansion coef-
ficients of the incident field. Once truncated matrix Eq. S2 are
solved for the scattering coefficients, the scattering, extinction,
and absorption cross-sections as well as the scattered field distri-
butions can be accurately calculated at any desired level of accu-
racy. The numerical solution of Eq. S2 can be obtained with a
machine precision if the matrix equation is truncated at a high
enough multipolar order.

Image Correlation Analysis of Colorimetric Fingerprint.We define the
autocorrelation function (ACF) GðξÞ of a fluctuating spatial
signal sðxÞ that describes the colorimetric fingerprint of nanopar-
ticle arrays as:

GðξÞ ¼ hsðxÞsðxþ ξÞi; [S3]

where the angle brackets hi, indicate averaging (integration) over
the spatial domain. In order to properly extract quantitative
information, the spatial signal needs to be correctly normalized
by defining the following quantity (6):

δsðxÞ ¼ sðxÞ − hsðxÞi
hsðxÞi [S4]

which enables proper definition of the normalized ACF:

gðξÞ ¼ hδsðxÞδsðxþ ξÞi ¼ hsðxÞsðxþ ξÞi − hsðxÞi2
hsðxÞi2 ¼ GðξÞ

hsðxÞi2 − 1.

[S5]

Analogously, for a colorimetric fingerprint in two spatial dimen-
sions, sðx;yÞ; we can define the two-dimensional normalized ACF
as:

gðξ;ηÞ ¼ hδsðx;yÞδsðxþ ξ;yþ ηÞi ¼ Gðξ;ηÞ
hsðx;yÞi2 − 1. [S6]

If the colorimetric fingerprint consists of an image with N ×M
pixels, the discrete implementation of the spatially averaged
ACF is readily obtained as:
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We notice that this definition of normalized ACF enables us to
obtain the variance of the spatial fluctuations of the colorimetric
fingerprints by simple evaluation of the autocorrelation function
in the limit when both ξ and η vanish (6):

var δsðx;yÞ ¼ lim
ξ→0

lim
η→0

gðξ;ηÞ ¼ gð0;0Þ: [S8]

In this paper, in order to perform the ACF calculations more
efficiently, we have resorted to the well known Fourier transform
relation (6, 7):

Gðξ;ηÞ ¼ F−1f½Fðsðx;yÞÞ� � ½F�ðsðx;yÞÞ�g: [S9]

Once Gðξ;ηÞ has been readily obtained from Eq. S9, we calcu-
lated the normalized ACF directly by using Eq. S6. The normal-
ized ACF profiles in one spatial dimension (see Fig. 5 of the
paper) are extracted from the two-dimensional normalized
ACF along the center line (x axis) of the image and have been
normalized with respect to the size of the array along the x-direc-
tion of the image.

General Principles of Linear Response Theory. Our findings demon-
strate that the colorimetric fingerprints of aperiodic structures
with continuous spatial Fourier spectra are the most sensitive
to small perturbation of the refractive index. This fact, which
we have proved using full vector analytical Mie theory, can be
more generally understood based on the general principles of
linear response theory for stationary random signals. This theory
provides the most general rationale to understand the scattering
properties by rough surfaces in the linear optics regime. (We
notice that the stationary hypothesis on the spatial signal (the
scattering surface) is well satisfied in the limit of large samples).
In fact, as long as the system’s response is linear, we can express
the mean square value of the system’s output function E½y2�
(which in rough surface scattering corresponds to the scattered
mean field fluctuations) as follows (8):
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−∞
jHðωÞj2SxðωÞdω; [S10]

where HðωÞ is the linear optical transfer function of the system
(frequency response), SxðωÞ is the spectral density of the nanos-
tructured surface (defined by the Fourier transform of its auto-
correlation function), and ω is a two-dimensional vector of spatial
frequencies. It is evident from Eq. S10 that the spectral character,
in particular the flatness of the spectral density, of aperiodic

arrays directly determines the intensity of the scattered field
fluctuations. These fluctuations will be stronger for aperiodic ar-
rays with “diffused” or flat Fourier spectra such as Rudin-Shapiro
and Gaussian prime lattices. Therefore, Fourier space engineer-
ing of aperiodic arrays provides a simple tool for the optimization
of the scattering response of deterministic aperiodic surfaces and
allows to select the most appropriate surface structures to match
specific application needs.

1. Mackowski DW (1994) Calculation of total cross sections of multiple-sphere clusters.
J Opt Soc Am A 11:2851–2861.

2. Quinten M, Kreibig U (1993) Absorption and elastic-scattering of light by particle
aggregates. Appl Opt 32:6173–6182.

3. Xu Y (1995) Electromagnetic scattering by an aggregate of spheres. Appl Opt
34:4573–4588.

4. Kreibig U, Vollme M (1995) Optical properties of metal clusters. (Springer-Verlag,
Berlin).

5. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles.
(John-Wiley and Sons, New York).

6. Wiseman PW, Petersen NO (1999) Image correlation spectroscopy. II. optimization for

ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor

oligomers on intact cells. Biophys J 76:963–977.

7. Petersen NO, Höddelius PL, Wiseman PW, Seger O, Magnusson KE (1993) Quantifica-

tion of membrane receptor distributions by image correlation spectroscopy: concept

and application. Biophys J 65:1135–1146.

8. Newland DE (2005) An introduction to random vibrations, spectral and wavelet

analysis, 3rd edition, (Dover Publications, New York)

Fig. S1. Atomic force microscopy (AFM) image of a Thue-Morse array with 40 nm-high, 100 nm-radius Cr nanoparticles, and minimum center-to-center
interparticle separation of 400 nm.
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Fig. S2. Dark-field scattering images of additional colorimetric fingerprints (A) Fibonacci, (B) Penrose, (C) Galois, (D) CoPrime, (E) Prime and (F) Ulam-Spiral
aperiodic arrays of 100-radius and 40 nm-high cylindrical Cr nanoparticles on a quartz substrate.

Fig. S3. Calculated red-shifts of the peaks in the total scattering efficiency of (A) Thue-Morse, (B) Gaussian prime, and (C) Rudin-Shapiro aperiodic arrays of
200 nm-diameter Cr nanoparticles with the change of the ambient refractive index from n ¼ 1.0 (red) to n ¼ 1.01 (blue) to n ¼ 1.02 (green). The nearest center-
to-center interparticle separation is 300 nm for the Gaussian prime array and 400 nm for Thue-Morse and Rudin-Shapiro arrays. The arrows indicate the
wavelengths of the resonant peaks in the scattering spectra of the arrays in air.
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Fig. S4. In-plane field intensity distributions in the Thue-Morse (A–C), Gaussian prime (D–F), and Rudin-Shapiro (G–I) arrays calculated at the corresponding
resonant peak wavelengths for Δn ¼ 0 (indicated by arrows in Fig. S3): (A–C): λTM ¼ 405.2 nm (D–F): λgp ¼ 623.15 nm, (G–I): λRS ¼ 413.7 nm. (J) The change of
the variances of the ACF of the calculated intensity distributions with the increase of the ambient refractive index.
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