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Abstract 

 

Reproductive success depends upon a robust and appropriately timed preovulatory luteinizing 

hormone (LH) surge. The LH surge, in turn, requires ovarian steroid modulation of gonadotropin 

releasing hormone (GnRH) neuron activation by the neuropeptide kisspeptin and by glutamate 

and γ-aminobutyric acid (GABA) neurotransmission in the medial preoptic area (mPOA). 

Middle-aged females exhibit reduced excitation of GnRH neurons and attenuated LH surges 

under estrogen positive feedback conditions, in part, due to increased GABA and decreased 

glutamate neurotransmission in the mPOA. This study tested the hypothesis that altered 

kisspeptin regulation by ovarian steroids plays a role in age-related LH surge dysfunction. We 

demonstrate that middle-aged rats exhibiting delayed and attenuated LH surges have reduced 

levels of Kiss1 mRNA in the anterior hypothalamus under estrogen positive feedback conditions. 

Kisspeptin application directly into the mPOA rescues total LH release and the LH surge 

amplitude in middle-aged rats and increases glutamate and decreases GABA release to levels 

seen in the mPOA of young females. Moreover, the N-methyl-D-aspartate receptor antagonist 

MK801 blocks kisspeptin reinstatement of the LH surge. These observations suggest that age-

related LH surge dysfunction results, in part, from reduced kisspeptin drive under estrogen 

positive feedback conditions and that kisspeptin regulates GnRH/LH release, in part, through 

modulation of mPOA glutamate and GABA release. 
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Introduction 
 

Initiation of a robust and appropriately timed 

preovulatory luteinizing hormone (LH) 

surge is achieved by estradiol and progesterone 

regulation of excitatory and inhibitory inputs 

onto gonadotropin releasing hormone (GnRH) 

neurons. Kisspeptin, a potent activator of GnRH 

neurons (1-4), is essential for LH surges (for 

review (5)). Afferent inputs from the 

anteroventral periventricular nucleus (AVPV) 

(6, 7) modulate the amplitude and frequency of 

GnRH secretion and generation of the LH surge 

(8). The expression of kisspeptin and of Kiss1 

mRNA increases in the AVPV on the day of 

proestrus and under estradiol positive feedback 

conditions (9, 10). Kisspeptin neurons in the 

AVPV and GnRH neurons  both express cFos at 

the time of the LH surge (1, 9, 10). Lastly, 

kisspeptin antibody attenuates the LH surge 

when infused into the preoptic area (11).  Hence 

AVPV kisspeptin neurons projecting to GnRH 

neurons in the medial preoptic area (mPOA) are 

thought to be critical for estradiol positive 

feedback regulation of the LH surge  (12, 13). 

 Estradiol initiates positive feedback by 

modulating many neurotransmitter inputs to 

GnRH neurons (for review (14, 15)). The LH 

surge in young female rats is accompanied by 

increased glutamate and decreased γ-

aminobutyric acid (GABA) neurotransmission in 

mPOA, where most GnRH neurons are located 

(16, 17). Glutamate, glutamate agonists (18), 

and GABAA antagonists (19-21) stimulate 

GnRH synthesis and LH release. GABA inhibits 

GnRH neurons (22), and glutamate receptor 

antagonists (23, 24) and GABAA receptor 

agonists (25) block GnRH/LH release. Recent 

studies suggest that kisspeptin increases 

glutamatergic (26, 27) and decreases 

GABAergic (28) input to GnRH neurons. These 

data imply that kisspeptin directly and indirectly 

affects GnRH neurons (3, 26). 

 An early and consistent marker of 

reproductive aging in female rats is a delayed 

and attenuated preovulatory LH surge (for 

review (14)), resulting in part from a reduced 

ability of steroids to  increase glutamatergic and 

decrease GABAergic neurotransmission in the 

mPOA (29-33).  We recently showed that LH 

surge amplitude in middle-aged rats is rescued 

by simultaneously increasing synaptic glutamate 

and decreasing GABA and GABAA receptor 

activation in the mPOA (21). Others have 

suggested that reduced excitatory input from the 

AVPV may underlie age-related LH surge 

changes (34). Although the role of kisspeptin in 

reproductive senescence has not been 

investigated, Kiss1 mRNA expression is altered 

in the medial basal hypothalamus of aged human 

and non-human primates (35, 36).  Therefore, 

we tested the hypothesis that age-related 

GnRH/LH surge impairment results from 

reduced expression of kisspeptin in the AVPV 

under estrogen positive feedback conditions, and 

that this may result in altered mPOA glutamate 

and GABA release.  

 

Materials and Methods 

 

Animals 

Young (3-4 months) and middle-aged (9-11 

months, retired breeders) female Sprague-

Dawley rats (Taconic Farms, Germantown, NY) 

were housed individually and maintained on a 

14-h light:10-h dark cycle with lights off at 2000 

h. Because we wish to identify changes in 

hypothalamic neurotransmitters that occur in the 

early stages of reproductive aging, while females 

still exhibit normal estrous cycles, only rats with 

at least two normal 4-day estrous cycles were 

used. 

 

Drugs 

Estradiol benzoate and progesterone were 

purchased from Steraloids, Inc. (Newport, RI), 

dissolved in peanut oil and injected 

subcutaneously (sc). Mouse kisspeptin-10 (110-

119)-NH2 (Kp-10; Phoenix Pharmaceutical, 

Belmont, CA), the rodent analog of human C-

terminal kisspeptin decapeptide (112-121)-NH2 

was chosen because of equivalent affects on LH 

release as compared to the full length peptide 

(37). Kp-10 was dissolved at 10 nM in artificial 

cerebrospinal fluid (ACSF) and dialyzed into the 

mPOA. The molecular weight of Kp-10 is 1.3 

kDa, well below the 30 kDa molecular cut-off 

for the microdialysis membrane.  MK801 (0.3 

mg/kg; Sigma, St. Louis, MO), a non-

competitive NMDA receptor antagonist, was 

given sc at a dose previously shown to block LH 
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surges in young females (23, 38). Cetrorelix 

acetate (100 µg/0.1 ml; EMD Serono, Inc., 

Rockland, MA), a competitive GnRH receptor 

antagonist, was suspended in 5% mannitol and 

administered sc 24 hr before and just prior to 

progesterone injection (39-41). ACSF included 

124 mM sodium chloride, 5 mM potassium 

chloride, 1.2 mM monopotassium phosphate, 10 

mM magnesium sulfate, 1.8 mM calcium 

chloride, 26 mM sodium bicarbonate, 10 mM 

dextrose, pH 7.4 and were from Fisher Scientific 

(Pittsburgh, PA).  

 

Stereotaxic surgery and jugular vein 

catheterization 

Rats were ovariohysterectomized (OVX) under 

ketamine (80 mg/kg) and xylazine (4 mg/kg) 

anesthesia; stereotaxic placement of the 

microdialysis guide cannula into the mPOA 

occurred during the same surgical session (21).   

Using Bregma as a landmark and stereotaxic 

coordinates from Pellegrino et al. (42) 

(dorsal/ventral -8.6, anterior/posterior +2.0 and 

medial/lateral ±0.6), a unilateral guide cannula 

was implanted in the mPOA. Guide cannulae 

and concentric dialysis probes (2 mm dialysis 

surface, 340 µm outer diameter) were purchased 

from BASi (West Lafayette, IN). Eight days 

later, rats received an intra-atrial jugular vein 

catheter for serial blood sampling (31). Catheters 

were kept patent with daily infusion of 

heparinized saline (50 IU).  All animal protocols 

were approved by the Institutional Animal Care 

and Use Committee and adhered to NIH 

Guidelines for the Care and Use of Laboratory 

Animals.  

 

Steroid priming 

All rats were primed with estradiol and 

progesterone for LH surge induction (31). At 

0900 hr on the day of catheterization, rats were 

injected with 2 µg of estradiol benzoate; a 

second injection was given 24 hr later. A single 

injection of 500 µg of progesterone was given at 

0900, 48 hr after the first estradiol benzoate 

injection (43). This protocol produces an LH 

surge in more than 80% of rats. 

 

Microdialysis and plasma sampling 

Microdialysis samples were collected at 30 min 

intervals from freely moving rats beginning at 

0800 hr (31). Microdialysis of the mPOA with 

Kp-10 (10 nM, 1.25 µl/min) began 1.5 hr before 

progesterone injection and continued throughout 

the experiment. Controls were dialyzed with 

ACSF alone. Blood sampling began 1 hr before 

or at the time of progesterone injection and 

continued every 1-2 hr for 12 hr.   Blood was 

collected into tubes containing heparinized 

saline (10 IU), refrigerated overnight and 

centrifuged at 10,000 x g for 20 min. Plasma 

was stored at -70°C until assayed for LH.  An 

equal volume of warmed saline was infused to 

avoid hypovolemia. Microdialysis samples were 

collected, flash frozen, and stored until 

glutamate and GABA were determined (21). 

Animals were overdosed with ketamine, 

decapitated, and the brain rapidly frozen for later 

histological assessment of probe placement.   

 

Hypothalamic dissection, RNA purification, 

reverse transcription and real time PCR 

Independent groups of OVX, young and middle-

aged rats were primed with peanut oil (control) 

or estradiol benzoate and progesterone as 

described above.  Rats were killed 4 or 7 hr after 

the progesterone or final oil injection. The entire 

hypothalamus and preoptic area were dissected, 

then transected just posterior to the optic chiasm. 

The anterior hypothalamus, which includes the 

AVPV, was immediately frozen on dry ice and 

kept at -80ºC for later determination of Kiss1 

mRNA expression. Although this tissue 

fragment includes cell groups in addition to the 

AVPV, the only Kiss1 mRNA expressing cells 

are those in the AVPV (for review (44)). 

 DNA-free total RNA was purified using 

the RNeasy Lipid Mini kit from Qiagen 

(Valencia, CA) including a DNase step.  Reverse 

transcription was performed using the High 

Capacity cDNA Reverse Transcription Kit with 

RNase inhibitor (Applied Biosystems, Foster 

City, CA) using 500 ng of RNA per 20 µl of RT 

reaction. Gene expression was measured by real 

time PCR using TaqMan Gene Expression 

Assays and Master Mix (Applied Biosystems) 

according to manufacturer’s instructions. The 

final reaction mix contained proprietary TaqMan 

probes and primers for the normalizer (rat 

GAPDH endogenous control, VIC®/MGB 

probe, RefSeq Rn01775763_g1, context 

sequence NM_017008.3) and specific target 
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(Kiss1, Fam probe, RefSeq Rn00710914_m1, 

context sequence NM_181692.1). Real-time 

PCR was performed using an ABI PRISM 

7900HT (Applied Biosystems) in multiplex 

conditions using 50 ng of cDNA per 20 µl of 

total reaction mix. Amplified transcripts for 

Kiss1 were quantified using the comparative 

threshold cycle method and GAPDH as 

normalizer. The fold change in Kiss1 expression 

was then calculated as 2
-∆∆CT

 where CT = 

threshold cycle, ∆CT = CT (Kiss1) - CT 

(GAPDH), ∆∆CT = ∆CT (experimental) - ∆CT 

(reference). ∆CT (reference) was calculated 

using the mean of the ∆CT for the anterior 

hypothalamus of OVX animals treated with oil. 

 

LH assay 

LH was assayed at Northwestern University 

using rat LH radioimmunoassay reagents 

provided by the National Hormone and Peptide 

Program. The lower limit of the assay was 0.2 

ng/ml, and the intra- and interassay coefficients 

of variation were 7.6 and 5.8 %, respectively.  

LH is reported as ng/ml/hr
-1

 (area under the 

curve, AUC) or ng/ml. A LH surge was defined 

as an increase in plasma LH equal to or greater 

than 1.5 times baseline (average LH value 

between 0800 and 1000 h) for at least two 

consecutive samples. Equivalent percentages of 

young (13/16) and middle-aged (30/34) rats with 

verified probe placements exhibited a LH surge. 

 

Analysis of glutamate and GABA 

Amino acids were separated by HPLC and their 

content in microdialysis samples was quantified 

as previously described (21). Amino acid 

identification and quantification were achieved 

by comparing peak retention times and heights 

in samples to known standards (Sigma). Amino 

acid content is reported as pmol/µl or 

pmol/µl//hr
-
1 (AUC). The lower limit for 

detection of glutamate and GABA was 0.08 

pmol. The recovery rate for glutamate and 

GABA is approximately 15% and is consistent 

across probes, based on in vitro calibrations of 

randomly selected probes.  

 

Histological verification of probe placements 

Every third 40 µm section throughout the extent 

of the dialysis probe track was stained with 

thionin to map probe placement in the mPOA 

(Figure 1). Only rats with a confirmed LH surge 

and appropriate probe placement were included 

in the data analysis. Two to four rats from each 

age group were discarded due to inaccurate 

probe placement and/or clogging of the probe. 

 
Statistical analysis 

The AUC for total glutamate and GABA and 

serum LH release was calculated using Sigma 

Plot 10.0 (Systat Software, Inc, Chicago, IL). 

Two-way ANOVA (age x treatment) was used 

to determine differences in Kiss1 mRNA, total 

and peak glutamate, GABA and LH levels. Total 

LH, glutamate and GABA in middle-aged rats 

treated with ACSF, Kp-10, Kp-10 + cetrorelix, 

and Kp-10 + MK801 were analyzed by one-way 

ANOVA. P ≤ 0.05 was considered statistically 

significant.  Latency to LH surge onset was 

evaluated with Kruskal-Wallis.  Bonferonni or 

Newman Keuls post-hoc tests were performed as 

appropriate. 
 

Results 
 

Estradiol induces less Kiss1 mRNA in middle-

aged females. 

Figure 2A shows the effect of age and hormone 

treatment on the expression of Kiss1 mRNA in 

the anterior hypothalamus. Young rats were 

killed 4 hr after the progesterone or oil injection. 

Middle-aged rats were killed at both 4 and 7 hr 

after progesterone or oil injection. These time 

points reflect the onset time of the LH surge in 

young (4 hr) and middle-aged (7 hr) rats. There 

were no differences in Kiss1 mRNA levels in 

middle-aged rats killed at 4 or 7 hr after 

progesterone, therefore, these data were pooled. 

Hormone treatment significantly increased Kiss1 

mRNA levels in both age groups (Figure 2A).  

However, hormone treatment induced 

significantly less Kiss1 mRNA in middle-aged 

than young rats. Age did not affect the 

expression of Kiss1 mRNA in control OVX rats. 

 

Kisspeptin infusion restores LH surge amplitude 

in middle-aged rats 

Kp-10 was dialyzed into the mPOA of OVX, 

steroid-primed rats beginning at 0730 hr on the 

day of the LH surge (Figure 2B-F). Control 

middle-aged rats exhibited significantly less 

total and peak LH release than all other groups 



 6 

(Figure 2B-F). Kp-10 administration to middle-

aged females significantly increased peak and 

total LH release to levels equivalent to young 

controls. Kp-10 had no effect on LH release in 

young rats.  The LH surge was delayed in 

control middle-aged rats compared to young 

rats.  Kp-10 did not affect LH surge onset in 

either age group. To verify that Kp-10 acted on 

GnRH neurons rather than on pituitary 

gonadotrophs (45), additional middle-aged rats 

infused with Kp-10 were also treated with the 

GnRH receptor antagonist cetrorelix (Figure 3).  

Cetrorelix blocked the LH surge in middle-aged 

rats treated with Kp-10.   

 

Kisspeptin modulates extracellular glutamate 

and GABA  

Total and peak glutamate release from the 

mPOA on the day of the LH surge in control 

middle-aged rats were less than 30% of those in 

young controls (Figure 4A-D). Kp-10 treated, 

middle-aged rats released significantly more 

glutamate than middle-aged controls and as 

much as young controls. In contrast, Kp-10 

significantly reduced glutamate by more than 

60% in young rats. Total and peak mPOA 

GABA on the day of the LH surge in control 

middle-aged rats was significantly greater than 

in all other groups (Figure 4E-HG). Kp-10 

reduced total and peak GABA release in middle-

aged rats to levels that were equivalent to young 

controls. Kp-10 did not affect GABA in young 

rats.   

 

MK801 receptor blockade 

There is good evidence that the NMDA subtype 

of glutamate receptor is essential for the 

generation of LH surges in young females in that 

the NMDA receptor antagonist MK801 blocks 

the LH surge (23, 46). Because Kp-10 

restoration of the LH surge in middle-aged rats 

was associated with increased glutamate release 

in the mPOA, we asked whether activation of 

NMDA receptors was necessary for Kp-10 

rescue of the LH surge (Figure 5). Systemic 

administration of the NMDA receptor antagonist 

MK801 blocked Kp-10-induced restoration of 

LH surges in middle-aged rats. MK801 also 

increased mPOA glutamate release but did not 

significantly affect GABA release. 

 

 

Discussion 

These data suggest that age-related attenuation 

of LH surge amplitude results from impaired 

hypothalamic sensitivity to estrogen positive 

feedback, resulting in reduced excitatory input to 

GnRH neurons. Specifically, age-related 

changes in LH surge amplitude may be causally 

linked to reduced Kiss1 mRNA expression in the 

AVPV, reduced mPOA glutamate and increased 

mPOA GABA release in response to estradiol 

and progesterone priming. Kisspeptin infusion 

into the mPOA of hormone-primed rats rescues 

GnRH/LH release and elevates local glutamate 

and decreases local GABA release, thereby 

restoring the balance of local excitatory and 

inhibitory amino acid release in the mPOA of 

middle-aged rats to levels typical of young 

females. Thus, age-related LH surge changes 

most likely result from reduced kisspeptin 

availability and/or release rather than reduced 

Kiss1r expression or compromised Kiss1r 

function in GnRH neurons.    

 

Middle-aged females have compromised 

endocrine (LH) and neural (Kiss1 mRNA) 

responses to estradiol 

A hallmark of impending reproductive failure in 

middle-aged rats is a delayed and attenuated LH 

surge, which is not due to reductions in GnRH 

neuron number or pituitary dysfunction (for 

review (14)). Instead, age-related LH surge 

dysfunction reflects compromised excitatory 

input to GnRH neurons under estradiol positive 

feedback conditions (21, 29, 33, 47). On the day 

of the surge, fewer GnRH neurons in middle-

aged females express cFos, a marker of neuronal 

activation, than in young females (34, 48). 

AVPV neurons, which provide excitatory 

afferent input to GnRH neurons (6, 49, 50), also 

exhibit reductions in the percentage of cFos-

positive neurons in middle-aged rats (34). 

Moreover, unilateral electrolytic lesions of the 

AVPV in young females produce ipsilateral 

reductions in cFos expression in GnRH neurons 

and LH release that resemble those of middle-

aged female rats (34). Therefore, we 

hypothesized that age-related LH surge 

dysfunction may reflect reduced excitatory input 

to GnRH and other mPOA neurons from AVPV 

kisspeptin neurons. We first determined if 
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estradiol increases Kiss1 mRNA levels in the 

anterior hypothalamus of middle-aged rats. 

Although our dissection includes cells in 

addition to those in the AVPV, the only Kiss1-

expressing cells in the dissection would be in the 

AVPV (for review (51)). In the absence of 

ovarian steroids, OVX young and middle-aged 

rats express equivalent levels of Kiss1 mRNA. 

Estradiol treatment significantly increased Kiss1 

mRNA levels in both young and middle-aged 

rats; however, the response to estradiol was 

significantly reduced in middle-aged rats.    

 This finding suggested that the delayed 

and attenuated LH surge may result from 

reduced excitatory drive from AVPV kisspeptin 

neurons. If so, we hypothesized that infusion of 

Kp-10 directly into the mPOA (52) might rescue 

LH surges in middle-aged rats. Moreover, 

because unilateral electrolytic lesions in young 

females attenuate LH release (34), we predicted 

that unilateral infusion of kisspeptin might 

rescue the LH surge. Consistent with this 

reasoning, unilateral infusion of Kp-10 into the 

mPOA rescued the LH surge in middle-aged 

rats. Therefore, age-related LH surge changes 

most likely result from reduced kisspeptin 

availability.  

 

Kisspeptin is permissive for generation of the 

LH surge.    

The delayed onset of the LH surge in middle-

aged females is proposed to result from altered 

circadian inputs (for review (53)). AVPV 

kisspeptin neurons are hypothesized to be the 

node through which circadian signals initiate the 

LH surge (10).  Therefore, we expected that Kp-

10 infusion into the mPOA would advance the 

LH surge in both young and middle-aged rats. 

Interestingly, continuous infusion of Kp-10 

beginning at 0730 hr did not change the onset of 

the LH surge nor did it produce an immediate 

LH response in either age group. Our data are 

consistent with Roa et al. who also showed no 

change in the onset of the LH surge when Kp-10 

was infused intraventricularly in cycling females 

on the day of proestrus (54). These data suggest 

that under steroid positive feedback conditions, 

kisspeptin release in the mPOA modulates the 

activity of GnRH neurons and of other hormone-

sensitive afferent inputs to GnRH neurons (55), 

especially GABA and glutamate neurons (Figure 

6). These findings also imply that kisspeptin 

plays a permissive role in generation of the LH 

surge.  

 Our findings do not dispute the 

possibility that circadian inputs activate Kiss1 

neurons on the day of the LH surge. The 

suprachiasmatic nucleus (SCN) is considered the 

circadian timekeeper driving LH surges (56). 

SCN neurons (e.g., that express vasoactive 

intestinal polypeptide (VIP) or arginine 

vasopressin) send projections both to neurons in 

the AVPV and to GnRH neurons and other 

mPOA neurons (57). Immunoneutralization of 

VIP with intraventricular VIP antiserum (58), 

infusion of VIP antisense oligonucleotides into 

the SCN (59) or thermal ablation of VIP neurons 

in the SCN (60) of young rats produces delayed 

and attenuated LH surges that resemble middle-

aged rats. Additionally, GnRH and AVPV 

neurons and VIP neurons in the SCN of middle-

aged rats exhibit reduced cFos expression on the 

day of the surge (34, 48, 59, 61, 62). Thus, both 

kisspeptin and GnRH neurons may receive 

compromised circadian inputs from VIP neurons 

located in the SCN of middle-aged rats (61).   

It has been hypothesized that kisspeptin 

neurons may receive and/or transmit circadian 

signals to GnRH neurons (10). This hypothesis 

is buttressed by the observation that kisspeptin 

immediately induces LH release in OVX rats 

under negative feedback conditions (without 

steroid priming) or when infused into the 

ventricles (9, 54, 63).  Short latency LH release 

observed after intravenous or ventricular 

infusions of kisspeptin might reflect actions on 

GnRH terminals in the median eminence (2, 51) 

and/or on pituitary gonadotropes (45).  In 

contrast, direct application of Kp-10 into the 

mPOA is unlikely to reach these sites. Hence, 

our data are not in conflict with the hypothesis 

that kisspeptin neurons located in the AVPV 

receive and then transmit circadian signals to 

GnRH neurons. However, our data suggest that 

kisspeptin does not independently drive the 

timing of the LH surge.  

  Our experiments are the first to evaluate 

the effects of continuous infusion of Kp-10 into 

the mPOA on the LH surge under positive 

feedback conditions. Although Roa et al. (54) 

evaluated Kp-10 effects on the LH surge in 

cycling rats on proestrus, they injected  a single 



 8 

bolus of Kp-10 into the lateral ventricle at 1200 

h, close to the onset of the LH surge in young 

rats. It is impossible to predict if an earlier 

injection of Kp-10 on the day of proestrus would 

have stimulated immediate LH release. These 

investigators also injected a single bolus of Kp-

10 into the lateral ventricle after a 4-day 

combined estrogen plus progesterone protocol. 

We cannot directly compare that study to ours 

because Kp-10 was injected into the lateral 

ventricle in a negative gonadal steroid feedback 

environment.     

 

Kisspeptin infusion modulates extracellular 

GABA and glutamate in the mPOA  

Our laboratory (21) and others (for review (66)) 

provide strong evidence that age-related LH 

surge dysfunction involves reduced excitatory 

input to GnRH neurons under estrogen positive 

feedback conditions. We recently showed that 

attenuated LH surges in middle-aged rats are 

causally related to reduced glutamate and 

increased GABA release in the mPOA. When 

we increased glutamate on a background of 

reduced GABAA receptor activation in the 

mPOA (21), GnRH neurons in middle-aged 

females appeared to maintain responsiveness to 

these neurotransmitters and produced a robust 

LH surge that was comparable to that of young 

females.   

 It is unclear why middle-aged rats 

release more GABA and less glutamate in the 

mPOA than young rats under positive feedback 

conditions (21). Because mounting evidence 

suggests that kisspeptin modulates amino acid 

neurotransmission (26-28, 67), we hypothesized 

that kisspeptin may also affect GnRH/LH 

release through modulation of local glutamate 

and GABA release. Our microdialysis results 

demonstrate that infusion of Kp-10 into the 

mPOA of middle-aged rats restores the altered 

balance between glutamate and GABA release 

on the day of the LH surge to levels observed in 

young controls. These findings are consistent 

with earlier work showing that peak and total 

LH release in middle-aged rats can be rescued 

by increasing glutamate and decreasing GABA 

and GABAA neurotransmission in the mPOA 

(21).  

 Restoration of LH surge amplitude in 

middle-aged rats by Kp-10 was associated with 

an elevation of mPOA glutamate. Because 

NMDA receptors are expressed by GnRH 

neurons, and they are critical in generation of the 

LH surge in young females (24, 68), we assessed 

whether activation of NMDA receptors 

contributed to Kp-10 facilitation of GnRH/LH 

release in middle-aged females. The NMDA 

receptor antagonist MK801 completely blocked 

the LH surge in middle-aged female rats infused 

with Kp-10. MK801 blockade of the LH surge 

most likely represents postsynaptic actions of 

the drug, because MK801 did not reverse the 

effects of Kp-10 on extracellular glutamate or 

GABA in the mPOA. This observation is 

consistent with other evidence that 

neurotransmitter systems in addition to 

kisspeptin are required for generation of the LH 

surge (15, 55, 69, 70).  For example, there is 

evidence that the Kiss1r is not essential for 

estradiol-induced LH surges (55). Other studies 

also support the hypothesis that kisspeptin 

indirectly affects GnRH/LH release by acting on 

glutamate neurons situated proximal to GnRH 

neurons (26). Most important, our data strongly 

suggest that Kiss1r activation, while necessary, 

is not sufficient for steroid-induced GnRH/LH 

surges in middle-aged rats and
 

other 

neurotransmitters such as glutamate are critical.  

 Delayed and attenuated LH surges in 

middle-aged rats are also associated with 

increased GABA in the mPOA relative to young 

rats (21, 32).   Rescue of LH surge amplitude in 

middle-aged rats by kisspeptin and maintenance 

of the LH surge in control and kisspeptin-treated 

young rats correlated with low levels of 

extracellular GABA in the mPOA. This is 

consistent with our previous report that high 

levels of mPOA GABA are associated with low 

amplitude LH surges in middle-aged rats and 

that pharmacological antagonism of GABAA 

neurotransmission increases the magnitude of 

the LH surge (21). Although direct application 

of GABA onto GnRH neurons induces GABAA 

receptor-mediated excitation (71), we posit that 

the net effect of increased extracellular GABA 

within the mPOA is to inhibit GnRH neuron 

activation, and that GnRH neurons are not the 

only target of the GABA detected by 

microdialysis (72). Interestingly, kisspeptin 

blocks GABAB receptor-mediated inhibition of 

GnRH neurons (28). Therefore, when the 
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GABAB receptors are inhibited and GABA 

levels in the mPOA are reduced by Kp-10, the 

expected net result would be increased 

activation of GnRH neurons and enhanced 

GnRH/LH release.  

 Unexpectedly, Kp-10 infusion in young 

hormone-primed rats significantly decreased 

mPOA glutamate levels. However, this 

reduction in glutamate did not significantly 

affect the LH surge. We do not know why Kp-

10 has different effects on glutamate in young 

and middle-aged rats. Extinction of LH release 

is observed after 48 hours of continuous 

kisspeptin exposure in female rats (73). Thus, 

continuous infusion of exogenous Kp-10 into the 

mPOA of young females, which are kisspeptin-

replete, could reduce the ability of the peptide to 

activate nearby glutamate neurons, thereby 

decreasing synaptic glutamate levels.  

 There are several reasons why young 

females with reduced mPOA glutamate still 

exhibit a normal LH surge. Neurotransmitters 

other than glutamate, especially norepinephrine, 

contribute to the LH surge and are implicated in 

LH surge dysfunction in middle-aged females 

(14). Because these neurotransmitter systems are 

intact and respond normally to estradiol in 

young females (Figure 6), they may be sufficient 

to generate a robust LH surge despite reduced 

glutamate. Alternatively, LH surges in young 

females may have been normal because the 

reduction in glutamate occurred on a 

background of elevated Kp-10 and low GABA. 

In other words, as long as GABA levels are low 

and other excitatory neurotransmitter systems 

are not compromised, as they are in middle-aged 

rats (14), GnRH neuron excitation in young rats 

may be sufficient to generate a normal LH surge 

even if glutamate levels are reduced. GnRH 

neurons of middle-aged females also have 

altered NMDA receptor subunit stoichiometry, 

which may render young rats more sensitive to 

glutamate (29, 74, 75). Alternatively, glutamate 

neurotransmission may be more critical in 

generation of the LH surge in middle-aged than 

in young rats. 

 

Is kisspeptin restoring the LH surge in an 

artificial manner?   

Kisspeptin activates GnRH neurons and Kp-10 

induces GnRH/LH release independent of 

steroid exposure (26, 54, 76). Therefore, one 

might hypothesize that because Kp-10 can 

induce GnRH/LH release in the absence of 

ovarian steroids, then the rescue of GnRH/LH 

release in middle-aged rats by Kp-10 may not 

reflect the physiological mechanisms that 

normally drive the LH surge in young animals. 

However, we do not believe that this is the case. 

First, estrogen receptor-alpha (ER-α) and 

estradiol priming of the hypothalamic-pituitary 

axis are essential for the LH surge (for review 

(77)). Consistent with this concept, Roa et al., 

recently demonstrated that a selective ER-α 

antagonist completely blocked LH surges in 

control and kisspeptin-treated young rats on 

proestrus but did not inhibit GnRH-induced LH 

release (54).  Additionally when kisspeptin was 

infused into the ventricles of OVX rats that were 

not treated with estradiol, LH release was brief 

and did not resemble LH surges of young (9, 54, 

63) or middle-aged rats (31). Moreover, if Kp-10 

effects on GnRH/LH release do not require 

ovarian hormones and are unrelated to the 

normal LH surge mechanism, then Kp-10 should 

also have the same effect on GnRH/LH release 

in all females regardless of age. Lastly, the 

effects of Kp-10 on LH release and mPOA 

glutamate and GABA levels are consistent with 

our previous work demonstrating rescue of LH 

surge amplitude in middle-aged rats when the 

balance of glutamate and GABA is restored in 

the mPOA (21).  

 

Kp-10 does not desensitize GnRH neurons 

Several studies suggest that continuous 

application of Kp-10 desensitizes GnRH neurons 

(26, 27, 67) and consequently reduces 

GnRH/LH release (64, 73). Electrophysiology 

studies in OVX mice treated with estradiol (26) 

or intact mice killed during diestrus (67) suggest 

that desensitization of GnRH neurons occurs 

after a brief exposure to high concentrations of 

kisspeptin. Another study evaluated GnRH/LH 

release during 7 days of intraventricular Kp-10 

infusion in cycling rats and suggested that 

GnRH neuron desensitization emerges only after 

two days of continuous Kp-10 exposure (73). 

We saw no evidence that Kp-10 infusion 

throughout the day of the LH surge desensitizes 

GnRH/LH release.  Perhaps if we continued Kp-
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10 for 48 h we would have observed 

desensitization (73). 

 

Kisspeptin did not act on gonadotropes 

Although unlikely, it is possible that Kp-10 

diffused to the pituitary, where it acted on 

gonadotopes to stimulate LH release (45).  

Therefore, we treated Kp-10-infused, middle-

aged rats with the GnRH antagonist cetrorelix. 

Kp-10 rescue of LH release in middle-aged rats 

was completely blocked by cetrorelix. These 

data are consistent with other studies showing 

that GnRH receptor antagonists block LH 

release induced by Kp-10 and -54 (78, 79).   

 

Summary 

We demonstrate that estradiol induction of Kiss1 

mRNA expression is reduced in the anterior 

hypothalamus of middle-aged rats and that Kp-

10 infusion into the mPOA under estrogen 

positive feedback conditions rescues LH surge 

amplitude and restores the balance of glutamate 

and GABA release. Kp-10 effects are blocked 

by a GnRH receptor antagonist, indicating that 

Kp-10 affects GnRH neurons (80). The NMDA 

receptor antagonist MK801 also blocked Kp-10 

rescue of the LH surge. Taken together, our data 

strongly suggest that age-related changes in the 

LH surge reflect, in part, reduced excitatory 

input from AVPV kisspeptin neurons to GnRH 

neurons and other mPOA neurons under 

estrogen positive feedback conditions. Age-

related LH surge changes result from reduced 

Kiss1 availability rather than reduced Kiss1r 

expression or compromised Kiss1r function in 

GnRH neurons. Our findings imply that 

kisspeptin directly and indirectly affects GnRH 

neuron activity by modulating local glutamate 

and GABA release in the mPOA (Figure 6).   
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Figure Legends 

 

Figure 1.  (A) Illustration of microdialysis probe placements in the medial preoptic area. ( A) 

The diagram corresponds to a coronal section at approximately 0.0 mm relative to Bregma (Plate 

33) in the atlas of Paxinos and Watson (81). Medial preoptic area (mPOA); third ventricle (3V); 

och (optic chiasm); ventromedial preoptic nucleus (VMPO), ventrolateral preoptic nucleus 

(VLPO); anteroventral periventricular area (AVPV); supraoptic nucleus (SO); Alar nucleus (Al);  

Strial part preoptic nucleus (StA); (B) Photomicrograph of thionin-stained coronal section 

showing a representative probe placement between Plates 32 and 33 in Paxinos and Watson (80). 

Magnification at 40X shows the approximate location of a microdialysis probe. The arrow 

indicates the site of probe tip.   

Figure 2:  The attenuated LH surge is rescued by Kp-10 and correlates with reduced production 

of Kiss1 mRNA under estradiol positive feedback conditions. (A) Kiss1 mRNA in the anterior 

hypothalamus, which includes the AVPV. Data are expressed as mean ± SEM from OVX young 

(Y) rats primed with estradiol and progesterone (E2+P; N=4) or oil (N=4) and OVX middle-aged 

(MA) rats primed with E2+P or oil and killed at 4 h (oil; N=4, E2+P; N 4) or 7 h (oil; N=4, 

E2+P; N=4) after the P or last oil injection. There was no statistical difference in Kiss1 mRNA 

levels in E2-primed MA rats killed at 4 (n =4) or 7 hr (n=4) after P; therefore, these data were 

pooled. The same was true for MA rats primed with oil (N=4/time point). There was a significant 

main effect of hormone treatment [F=44, P<0.0001], age [F=5, P<0.03] and an interaction 

between hormone treatment and age [F=7, P<0.01]. 
a 

P<0.005 vs. all E2+P groups; 
b 

P<0.05 vs. 

Y E2+P.  (B-F) Plasma LH levels are expressed as mean ± SEM from OVX and E2+P primed 

young control rats (Y; N=6) and middle-aged control rats (MA; N=7) dialyzed with ACSF and 

young (Y+Kp-10; N=6) and middle-aged rats (MA+Kp-10; N=10) dialyzed with 10 nM Kp-10. 
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Progesterone was injected at 0900 h (time 0).  (B) LH surge in control rats.  (C) LH surge in Kp-

10 treated rats. (D) Total LH (AUC); there was a main effect of age [F=11, P<0.01] and an 

interaction between age and Kp-10 [F=12, P<0.001]. (E) Peak LH; there was a main effect of age 

[F=11, P<0.005] and an interaction between age and Kp-10 [F=5.5, P<0.05]. (F) LH surge onset 

(h relative to P injection) [Kruskal Wallis=21.8, P<0.005]. 
a
 P<0.05 vs Y;

 b
 P<0.05 vs. Y+Kp-10; 

c
 P<0.01 vs. MA+Kp-10. 

Figure 3.  Kisspeptin acts on the hypothalamus to enhance LH surges in middle-aged rats.  Data 

are means ± SEM from OVX, estradiol and progesterone replaced middle-aged control (MA; 

N=4) and MA rats dialyzed with 10 nM Kp-10 alone (Kp-10; N=4), with 10 nM Kp-10 and 

injected with vehicle (Veh; N=4) or with 10 nM Kp-10 and injected with 100 µg of the GnRH 

receptor antagonist cetrorelix both 24 hr prior to and immediately before the progesterone 

injection (Kp-10 + cetrorelix; N=4). Progesterone was injected at 0900 h (time 0). (A) LH 

surges. (B) Peak LH; F=24.5, P<0.0001.  (C) Total LH (AUC); F= 15.7, P<0.001. (D) LH surge 

onset (h relative to P injection) 
a
 P<0.001 vs. all other groups 

Figure 4. Kisspeptin differentially affects glutamate and GABA release in the mPOA of young 

and middle-aged rats on the day of the LH surge. Data are means ± SEM and are from the same 

animals shown in Figure 2. Time course of extracellular glutamate (Glu) (A-B) and GABA (E-F) 

levels in the mPOA of control and Kp-10-treated young (Y) and middle-aged rats (MA). (C) 

Total Glu (AUC); there was an interaction between age and Kp-10 [F=25.12, P<0.0001]. (D) 

Peak Glu release; there was an interaction between age and Kp-10 [F=14.4, P<0.001]. (G) Total 

GABA; there were main effects of age [F=7.7, p<0.01] and treatment [F=11.8, P<0.005] and an 

interaction between age and Kp-10 [F=24.9, P<0.001]. (H) Peak GABA release; there were main 

effects of age [F=8.5, P<0.01] and treatment [F=7 P<0.02] and an interaction between age and 
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Kp-10 [F=11.8, P<0.003]. 
a
 P<0.05 vs. Y control;

 b
 P<0.01 vs MA+Kp-10; 

c 
P<0.001 vs. Y 

control; 
d 

P<0.01 vs. Y+ Kp-10 vs. MA+ Kp-10.  

Figure 5. Kisspeptin facilitation of LH release in middle-aged rats requires activation of NMDA 

receptors. Data are means ± SEM. (A) Time course of LH release from control (N=4), Kp-10 

(N=7) and Kp-10+MK801-treated (N=6) middle-aged rats (MA). (B) Total LH release [F=13.9, 

P<0.005]. (C) Total glutamate (Glu) release [F=74.8, P<0.001]. (D) Peak Glu [F=43.2, P<0.005].  

(E) Total GABA release [F=13.9, P<0.01].  (F) Peak GABA [F=9.2, P<0.005].  
a
P<0.01 vs. MA;

 

b
 P<0.001 vs. MA+Kp-10+MK801. 

Figure 6.  Proposed model for direct and indirect actions of kisspeptin on GnRH/LH release in 

young and middle-aged rats under estradiol positive feedback conditions.  (A) Young adult rats: 

in the presence of estradiol (E2) positive feedback environment, increased kisspeptin in AVPV 

neurons directly activate GnRH neurons and indirectly affects the GnRH/LH surge by increasing 

glutamate and decreasing GABA release in the mPOA. Kisspeptin can also inhibit GABAB 

receptors (28) on GnRH neurons.  GnRH neurons in young females also receive E2-regulated 

inputs that include but are not limited to norepinephrine neurons (for review (14)). Estradiol 

positive feedback is mediated by estrogen receptor-α (ER-α), which is expressed in the neurons 

indicated. (B) Middle-aged rats: we propose that middle-aged rats have age-related changes in 

responsiveness to E2 in all ER-α expressing neurons shown. E2 induces less Kiss1 mRNA in the 

AVPV of middle-aged females, which may attenuate GnRH/LH release and contribute to 

increased GABA and GABA mediated inhibition, and decreased glutamate in the mPOA.  The 

increase in GABA may reduce both glutamate and norepinephrine release (82) . The altered 

balance of glutamate and GABA neurotransmission, along with reductions in norepinephrine 

(83, 84) and alterations of other neurotransmitters in response to E2 positive feedback reduces 
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activation of GnRH neurons on the day of the LH surge (for review (14)).  Kisspeptin infusion 

into the mPOA rescues LH surge amplitude by direct actions on GnRH neurons and by restoring 

the balance of glutamate and GABA release to levels typical of young females. Black arrows: 

excitatory actions; Gray arrows: inhibitory actions.  Large arrows represent robust input and 

small arrows indicate reduced input. (+) and (-) indicate relative amounts of afferent excitatory 

and inhibitory input, respectively.  
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