A Chiral Azolium-Catalyzed, Enantioselective Claisen Rearrangement

Juthanat Kaeobamrung, Jessada Mahatthananchai, Pinguan Zheng, and Jeffrey W. Bode^{*} Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA

Supporting Information

Table of Contents

General Methods	S02
General Procedure for Enantioslective Annulation of Ynals and Kojic Acid Derivatives	S03
Preparations and Characterizations of Products 2–15	S04
An azolium-catalyzed Claisen rearrangement via oxidation of α,β -unsaturated aldehyde	S17
Relative Reactivity of <i>o</i> , <i>o</i> -Dichloro and <i>o</i> , <i>p</i> -Dichloro Phynylpropiolaldehydes	S18
1,2 Addition of <i>N</i> -Cbz Hydroxamic Acid to an Activated Carboxylate	S19
Confirmation of Base Promoted Epimerization	S19
Catalyst Counter Ions Comparison	S20
Experimental Rate Orders Measurements	S21
Activation Parameters Analysis for Azolium-Catalyzed Claisen Rearrangement	S25
Derivation of Rate Laws for Azolium-Catalyzed Claisen Rearrangement	S27
Derivation of Rate Laws for Azolium-Catalyzed Conjugate Addition	S30
¹ H and ¹³ C NMR Spectra for Products 2–15.	S33

^{*} Corresponding author's current address: Laboratorium für Organische Chemie, ETH-Zürich, Wolfgang Pauli Strasse 10, CH-8093 Zürich, Switzerland.

General methods. All reactions utilizing air- or moisture-sensitive reagents were performed in dried glassware under an atmosphere of dry N₂. Dichloromethane (CH₂Cl₂) was distilled over CaH₂; EtOH was distilled over Na. THF and toluene were dried by passage over activated alumina under an Ar atmosphere. For all mechanistic investigations, the reactions were performed in deuterated toluene (distilled from sodium and benzophenone). The derivatives of vnals were synthesized according to literature procedure.¹ Other reagents were used without further purification. Thin layer chromatography (TLC) was performed on Merck precoated plates (silica gel 60 F₂₅₄, Art 5715, 0.25 mm) and were visualized by fluorescence quenching under UV light or by staining with phosphomolybdic acid. Silica-gel preparative thin-layer chromatography (PTLC) was performed using plates prepared from Merck Kieselgel 60 PF₂₅₄ (Art 7747). Flash column chromatography was performed on E. Merck Silica Gel 60 (230-400 Mesh) using a forced flow of 0.5–1.0 bar. ¹H NMR and ¹³C NMR were measured on Bruker Avance II 500 MHz, 125 MHz respectively. Chemical shifts are expressed in parts per million (ppm) downfield from residual solvent peaks, and coupling constants are reported in Hertz (Hz). Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quartet; m, multiplet. The enolic proton of the products is not usually observed in the proton spectra. Infrared (IR) spectra were recorded on a JASCO FT:IR-4100 spectrophotometer and reported as wavenumber (cm⁻¹). Optical rotations were measured on a JASCO P-1010 polarimeter operating at the sodium D line with a 100 mm path length cell, and were reported as follows: $[\alpha]_D^T$ (concentration (g/100 ml), solvent).

HPLC conditions. Column, Daicel Chiralpak IA (4.6×250 mm), Daicel Chiralpak IB (4.6×250 mm); Daicel Chiralpak ODH (4.6×250 mm); eluent: hexanes:*i*-PrOH; flow rate 1.0 mL/min; detection wavelength: 220 nm.

SFC conditions. Column, Daicel Chiralpak AS-H ($4.6 \times 250 \text{ mm}$), Diacel Chiralcel OJ-H ($4.6 \times 250 \text{ mm}$); eluent: CO₂: *i*PrOH; oven temperature: 40 °C; outlet pressure 100 bar; flow rate 2.0 mL/min; detection wavelength: 220 nm.

^{(1) (}a) Journet, M.; Cai, D.; Dimichele, L. M.; Larsen, R. D. *Tetrahedron Lett.* **1998**, *39(36)*, 6427–6428. (b) Serra, S.; Fuganti, C. *Synlett.* **2002**, *10*, 1661–1664.

General procedure for enantioselective annulation of ynals and kojic acid derivatives: 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4h-pyran-4-one

The reaction of 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one² and 3phenylpropiolaldehyde is representative. Into an oven dried 10.0 mL round bottom flask, 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one (102.5 mg, 0.40 mmol, 1.0 equiv) and (*S*,*R*) triazolium precatalyst (1)³ (15.8 mg, 0.10 equiv) were added, followed by 4.0 mL toluene (0.1 M) and 3-phenylpropiolaldehyde (78.0 mg, 0.60 mmol, 1.50 equiv). The flask was sealed with a polyethylene cap. The resulting solution was heated to 40 °C and stirred for 24 h before it was diluted with EtOAc and poured into sat aq NH₄Cl solution. The mixture was extracted with 3 x 5.0 mL EtOAc. The combined organic extract was dried over Na₂SO₄. After filtration and concentration in vacuo, the residue was dissolved in 5.0 mL MeOH and stirred for 6 h. MeOH was removed, and the crude product was purified by flash chromatography (gradient, 0%–5% MeOH in dichlorometane) to give the product as a pale brown-yellow solid (133.3 mg, 80%).

Racemic standards of the chiral products were prepared by the use of 2-mesityl-6,7-dihydro-5Hpyrrolo[2,1-c][1,2,4]triazol-2-ium chloride $(19)^4$ as the catalyst. In most cases, this achiral catalyst was less efficient in terms of chemical yield than the chiral triazolium counterpart.

⁽²⁾ Kamino, T.; Kuramochi, K.; Kobayashi, S. Tetrahedron Lett. 2003, 44, 7349-7351

⁽³⁾ Both (S,R) chiral triazolium salt (1) and its (R,S) enantiomer are commercially available from Sigma-Aldrich (catalog number 683981 and 683973).

^{(4) (}a) Sohn. S. S.; Bode. J. W. *Org. Lett.* **2005**, *7*, 3873–3876. (b) This achiral triazolium salt (**19**) is also commercially available from Sigma-Aldrich (catalog number 688487).

Preparations and characterizations of products 2-14

(S)-methyl-3-(6-((tert-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3phenylpropanoate (Table 1, 2). Prepared according to the general procedure from 2-((tertbutyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-phenylpropiolaldehyde using 10 mol % 1 as the catalyst in 80% yield as a pale yellow solid. $[\alpha]_D^{20}$ (c 1.05, CHCl₃): -14.26; ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.31 (m, 5H), 6.46 (s, 1H), 4.80–4.77 (m, 1H), 4.46 (s, 2H), 3.63 (s, 3H), 3.21 (dd, 1H, J = 9.0, 16.0 Hz), 3.02 (dd, 1H, J = 7.5, 16.0 Hz), 0.92 (s, 9H), 0.10(s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 171.4, 167.2, 149.6, 141.5, 139.4, 129.0, 128.8, 127.8, 127.6, 108.5, 61.6, 52.0, 40.8, 36.8, 29.8, 25.8, 18.3, -5.3; IR (thin film) v 3254, 2929, 1740, 1629, 1453, 1254, 838, 700 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₂H₃₀O₆Si, 441.1709 found, 441.1694; 97% ee as determined by HPLC (IB, 9:1 hexanes:*i*-PrOH), t_r = 7.2 and 9.6 min. Ozonolysis⁵ of **2**, followed by KOH saponification, afforded (S)-(+)-phenylsuccinic acid which was confirmed by ¹H and ¹³C NMR comparison with literature values.⁶ The absolute configuration of the experimentally obtained (S)-(+)-phenyl succinic acid was confirmed by comparison with a commercial sample from Sigma-Aldrich. The measured optical rotation was recorded as $\left[\alpha\right]_{D}^{20}$ (c = 0.20, acetone): +101.9, and Sigma-Aldrich reported $\left[\alpha\right]_{D}^{20}$ (c = 1%, acetone): $+171\pm4$.

⁽⁵⁾ Johnson, S. C.; Crasto, C.; Hecht, S. M. Chem. Commun. 1998, 9, 1019–1020.

⁽⁶⁾ Makosza, M.; Marcinowicz, A. Synthesis. 2001, 9, 1311–1312.

(*S*)-methyl-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3-otolylpropanoate (*Table 1*, 3). Prepared according to the general procedure from 2-((*tert*butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-*o*-tolylpropiolaldehyde using 10 mol % 1 as the catalyst in 95% yield as a brown oil. $[\alpha]_D^{20}$ (c 1.04, CHCl₃): -2.59; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (m, 1H), 7.16–7.15 (m, 3H), 6.46 (s, 1H), 5.04 (t, 1H, *J* = 8.5 Hz), 4.45 (s, 2H), 3.62 (s, 3H), 3.17 (dd, 1H, *J* = 8.5, 16.0 Hz), 2.98 (dd, 1H, *J* = 7.0, 16.0 Hz), 2.47 (s, 3H), 0.92 (s, 9H), 0.10 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 171.5, 167.3,149.6, 141.5, 137.6, 136.6, 131.0, 127.4, 126.9, 126.5, 108.5, 61.6, 52.0, 37.1, 36.4, 25.9, 19.9, 18.3, -5.3; IR (thin film) v 3249, 2953, 2857, 1741, 1630, 1255, 1165, 839, 781 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₃H₃₂O₆Si, 455.1866 found, 455.1866; 95% ee as determined by HPLC (IB, 9:1 hexanes:*i*-PrOH) *t_r* = 7.4 and 10.0 min.

(*S*)-methyl-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3-(3chlorophenyl)propanoate (*Table 1*, 4). Prepared according to the general procedure from 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-(3-chlorophenyl)propiolaldehyde using 10 mol % 1 as the catalyst in 87% yield as a white solid. $[\alpha]_D^{20}$ (c 0.50, CHCl₃): -19.23; ¹H NMR (500 MHz, CDCl₃) δ 7.32 (s, 1H), 7.26–7.24 (m, 3H), 6.47 (s, 1H), 4.75 (t, 1H, J = 16.0 Hz), 4.46 (s, 2H), 3.64 (s, 3H), 3.18 (dd, 1H, J = 8.5, 16.0 Hz), 3.01 (dd, 1H, J = 7.5, 16.0 Hz), 0.93 (s, 9H), 0.12 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 171.2, 167.4, 148.4, 141.4, 141.3, 134.8, 130.3, 128.0, 127.9, 126.0, 108.3, 61.6, 52.2, 40.6, 36.5, 25.8, 18.3, -5.34; IR (thin film) v 3261, 2928, 1735, 1624, 1587, 1254, 1233, 838, 781 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₂H₂₉ClO₆Si, 475.1320 found, 475.1313; 99% ee as determined by HPLC (IB, 9:1 hexanes:*i*-PrOH) *t_r* = 23.8 and 39.4 min.

(*S*)-methyl-3-(4-bromophenyl)-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)propanoate (*Table 1*, 5). Prepared according to the general procedure from 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-(4-bromophenyl) propiolaldehyde using 10 mol % 1 as the catalyst in 82% yield as a pale yellow solid. $[\alpha]_D^{20}$ (c 0.59, CHCl₃): -27.8; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, 2H, *J* = 8.5 Hz), 7.22 (d, 2H, *J* = 8.5 Hz), 6.46 (s, 1H), 4.71–4.62 (m, 1H), 4.46 (s, 2H), 3.64 (s, 3H), 3.16 (dd, 1H, *J* = 8.5, 16.5 Hz), 3.00 (dd, 1H, *J* = 8.5, 16.5 Hz), 0.93 (s, 9H), 0.11 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.5, 174.2, 171.2, 168.6, 167.2, 149.0, 145.7, 141.4, 138.3, 137.4, 132.1, 130.8, 129.5, 129.3, 121.6, 109.1, 108.5, 61.6, 61.5, 52.1, 40.3, 36.5, 29.8, 25.9, 25.8, 18.4, 18.3; IR (thin film) v 3248, 2953, 2928, 1741, 1630, 1254, 1164, 839, 780 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₂H₂₉BrO₆Si, 519.0814 found, 519.0804; 92% ee as determined by HPLC (IB, 9:1 hexanes:*i*-PrOH) *t_r* = 7.8 and 10.7 min.

(*S*)-methyl-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3-ptolylpropanoate (*Table 1*, 6). Prepared according to the general procedure from 2-((*tert*butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-*p*-tolylpropiolaldehyde using 10 mol % **1** as the catalyst in 98% yield as a pale yellow solid. $[\alpha]_D^{20}$ (c 1.42, CHCl₃): -25.87; ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, 2H, *J* = 8.0 Hz), 7.11 (d, 2H, *J* = 8.0 Hz), 6.47 (s, 1H), 4.78 (t, 1H, *J* = 8.0 Hz), 4.40 (s, 2H), 3.62 (s, 3H), 3.18 (dd, 1H, *J* = 8.5, 16.0 Hz), 3.00 (dd, 1H, *J* = 7.5, 16.0 Hz), 2.31 (s, 3H), 0.92 (s, 9H), 0.10 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.4, 171.5, 167.1, 150.0, 141.4, 137.3, 136.4, 129.6, 127.6, 108.5, 61.6, 52.0, 40.4, 38.9, 25.8, 21.2, 18.3, -5.3; IR (thin film) v cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₃H₃₂O₆Si, 455.1866 found, 455.1872; 98% ee as determined by HPLC (IB, 9:1 hexanes:*i*-PrOH) *t_r* = 6.4 and 7.9 min.

(*S*)-methyl-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3-(4methoxyphenyl)propanoate (*Table 1*, 7). Prepared according to the general procedure from 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-(4-methoxyphenyl) propiolaldehyde using 10 mol % **1** as the catalyst in 88% yield as a yellow-brown solid. $[\alpha]_D^{20}$ (c 1.10, CHCl₃): -23.29; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, 2H, *J* = 8.5 Hz), 6.84 (d, 2H, *J* = 8.5 Hz), 6.46 (s, 1H), 4.74 (t, 1H, *J* = 8.0 Hz), 4.46 (s, 2H), 3.78 (s, 3H), 3.62 (s, 3H), 3.15 (dd, 1H, *J* = 8.5, 16.0 Hz), 2.99 (dd, 1H, *J* = 7.0, 16.0 Hz), 0.92 (s, 9H), 0.10 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 171.5, 167.1, 159.0, 150.1, 141.2, 131.4, 128.8, 114.3, 108.5, 61.6, 55.3, 52.0, 40.0, 37.0, 25.8, 18.3, -5.3; IR (thin film) v 3250, 2953, 2930, 1740, 1630, 1253, 838, 780 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₃H₃₂O₇Si, 471.1815 found, 471.1831; 96% ee as determined by HPLC (IB, 9:1 hexanes:*i*-PrOH) *t_r* = 6.8 and 8.8 min.

(*S*)-methyl-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3-(4chlorophenyl)propanoate (*Table 1*, **8**). Prepared according to the general procedure from 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-(4chlorophenyl)propiolaldehyde using 10 mol % **1** as the catalyst in 90% yield as a pale-brown yellow solid. $[\alpha]_D^{20}$ (c 0.52, CHCl₃): -28.6; ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.26 (m, 4H), 6.46 (s, 1H), 4.76 (t, 1H, *J* = 8.5 Hz), 4.45 (s, 2H), 3.63 (s, 3H), 3.17 (dd, 1H, *J* = 9.0, 16.5 Hz), 3.00 (dd, 1H, *J* = 8.0, 16.5 Hz), 0.92 (s, 9H), 0.10 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.4, 171.2, 167.1, 149.4, 141.5, 137.8, 133.5, 129.2, 129.1, 108.7, 61.5, 61.4, 58.4, 52.1, 40.1, 36.6, 25.8, 25.7, 18.4, 18.3, -5.3; IR (thin film) v 3241, 2928, 2361, 1760, 1684, 1168, 1091, 779, 668 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₂H₂₉ClO₆Si, 475.1320 found, 475.1316; 96% ee as determined by SFC (OJ-H, 15% *i*-PrOH in CO₂) $t_r = 5.0$ and 6.3 min.

(*S*)-methyl-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3-(2,6-dichlorophenyl)propanoate (*Table 1*, 9). Prepared according to the general procedure from 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-(2,6dichlorophenyl)propiolaldehyde using 10 mol % 1 as the catalyst in 95% yield as a dark-brown solid. $[\alpha]_D^{20}$ (c 0.10, CHCl₃): +109.3; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (s, 2H), 7.10 (s, 1H), 6.46 (s, 1H), 5.64–5.61 (m, 1H), 4.45 (d, 1H, *J* = 5.5 Hz), 4.34 (d, 1H, *J* = 5.5 Hz), 3.65 (s, 3H), 3.52–3.46 (m, 1H), 2.76–2.72 (m, 1H), 0.88 (s, 9H), 0.06 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 171.4, 166.7, 147.0, 142.4, 134.9, 129.3, 129.1, 108.6, 61.4, 52.1, 38.3, 33.2, 25.8, 18.3, -5.4; IR (thin film) v 2952, 1741, 1631, 1435, 1250, 838, 776 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₂H₂₈Cl₂O₆Si, 509.0930 found, 509.0955; 94% ee as determined by HPLC (IB, 9:1 hexanes:*i*-PrOH) *t_r* = 8.0 and 12.8 min.

(*S*)-methyl-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3-(2,4-dichlorophenyl)propanoate (*Table 1*, 10). Prepared according to the general procedure from 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-(2,4dichlorophenyl)propiolaldehyde⁷ using 10 mol % 1 as the catalyst in 95% yield as a dark-brown solid. $[\alpha]_D^{20}$ (c 0.94, CHCl₃): +17.48; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (s, 1H), 7.28–7.25 (m, 1H), 7.22–7.20 (m, 1H), 6.49 (s, 1H), 5.18–5.15 (m, 1H), 4.44 (d, 2H, *J* = 2.5 Hz), 3.65 (s, 3H), 3.19 (dd, 1H, *J* = 9.0, 16.5 Hz), 2.97 (dd, 1H, *J* = 6.5, 16.5 Hz), 0.91 (s, 9H), 0.10 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.2, 171.0, 167.5, 147.6, 142.1, 135.5, 134.6, 134.1, 129.9, 129.7, 127.7, 108.4, 61.5, 52.2, 38.0, 36.2, 25.8, 18.3, -5.4; IR (thin film) v 3230, 2953, 2857, 1742, 1652, 1253, 861, 781 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₂H₂₈Cl₂O₆Si, 509.0930 found, 509.0955; 95% ee as determined by HPLC (ODH, 9:1 hexanes:*i*-PrOH) *t_r* = 6.5 and 7.6 min.

(*S*)-methyl-3-(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)-3-phenylpropanoate (*Table 1*, 11). Prepared according to the general procedure from 5-hydroxy-2-methyl-4H-pyran-4-one⁷ and 3-phenylpropiolaldehyde using 10 mol % 1 as a catalyst in 90% yield as a pale yellow solid. $[\alpha]_D^{20}$ (c 0.62, CHCl₃): -38.22; ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.26 (m, 5H), 6.17 (s, 1H), 4.77 (t, 1H, *J* = 8.5 Hz), 3.64 (s, 3H), 3.22 (dd, 1H, *J* = 9.0, 16.5 Hz), 3.01 (dd, 1H, *J* = 7.0, 16.5 Hz), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 171.5, 165.4, 149.5, 140.9, 139.5, 129.0, 127.7, 127.6, 110.5, 52.0, 40.8, 36.8, 20.2; IR (thin film) v 3246, 2925, 1738, 1621, 1436, 1211, 733, 701 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₁₆H₁₆O₅, 311.0895 found, 311.0901; 99% ee as determined by SFC (ASH, gradient 5%–80% *i*-PrOH in CO₂, rate 10%/min) *t_r* = 4.3 and 5.3 min.

⁽⁹⁾ Őztürk, G.; Erol, D. D.; Aytemir, M. D.; Uzbay, T. Eur. J. Med. Chem. 2002, 37, 829-834

(*S*)-methyl-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3cyclohexenylpropanoate (*Table 1*, 12). Prepared according to the general procedure from 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and 3-cyclohexenyl propiolaldehyde using 10 mol % 1 as the catalyst in 98% yield as a pale brown solid. $[\alpha]_D^{20}$ (c 1.10, CHCl₃): -22.76; ¹H NMR (500 MHz, CDCl₃) δ 6.47 (s, 1H), 5.61 (s, 1H), 4.46 (s, 2H), 4.05 (t, 1H, *J* = 7.5 Hz), 3.64 (s, 3H), 2.88 (dd, 1H, *J* = 9.0, 16.0 Hz), 2.79 (dd, 1H, *J* = 7.0, 16.0 Hz), 2.00–1.95 (m, 4H), 1.61–1.57 (m, 4H), 0.93 (s, 9H), 0.12 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.2, 172.0, 167.0, 150.0, 142.0, 135.1, 124.4, 108.4, 61.6, 51.9, 42.2, 34.8, 27.1, 25.8, 25.4, 22.8, 22.2, 18.3, -5.4; IR (thin film) v 3263, 2929, 1729, 1627, 1252, 1164, 839, 781 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₂₂H₃₄O₆Si, 445.2022 found, 445.1968; 97% ee as determined by HPLC (IB, 20:1 hexanes:*i*-PrOH) *t_r* = 8.4 and 10.2 min.

(R)-methyl-3-(6-((tert-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-

yl)heptanoate (*Table 1*, 13). Prepared according to the general procedure from 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one and hept-2-ynal using 10 mol % **1** as the catalyst in 78% yield as pale yellow solid. $[\alpha]_D^{20}$ (c 0.28, CHCl₃): -11.70; ¹H NMR (500 MHz, CDCl₃) δ 6.49 (s, 1H), 4.50 (s, 2H), 3.66 (s, 3H), 3.51–3.47 (m, 1H), 2.71 (dd, 1H, *J* = 8.0, 15.5 Hz), 2.60 (dd, 1H, *J* = 6.5, 15.5 Hz), 1.72–1.67 (m, 3H), 1.64–1.59 (m, 6H), 0.93 (s, 9H), 0.11 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 172.1, 167.2, 151.2, 142.1, 108.4, 61.6, 51.9, 37.0, 35.5, 32.1, 29.3, 25.8, 22.5, 18.3, 14.0, -5.3; IR (thin film) v cm⁻¹; HRMS (ESI) [M+H]⁺ calcd. for C₂₀H₃₄O₆Si, 399.2203 found, 399.2206; >99% ee as determined by HPLC (IA, 100:1 hexanes:*i*-PrOH) *t_r* = 35.0 and 38.5 min.

(*R*)-ethyl-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-6-carboxylate (Scheme 2, 14). Prepared according to the generalprocedure from ethyl pyruvate and 3-phenylpropiolaldehyde (The

Page S15 of S62

aldehyde was added 2 portions: 1.5 equiv, and after 12 h, another 1.0 equiv) using 10 mol % **1** as catalyst and 20 mol % ⁱPr₂NEt as a base in 74% yield as a pale yellow oil. $[\alpha]_D^{20}$ (c 0.35, CHCl₃): +120.0; ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.35 (m, 2H), 7.32–7.31 (m, 1H), 7.20–7.18 (m, 2H), 6.64 (d, 1H, J = 4.5 Hz), 4.35–4.31 (m, 2H), 3.96–3.92 (m, 1H), 2.98 (dd, 1H, J = 7.0, 16.0 Hz), 2.76 (dd, 1H, J = 8.5, 16.0 Hz), 1.35 (t, 3H, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 160.5, 143.0, 140.0, 129.4, 128.1, 127.0, 117.9, 62.1, 37.3, 35.9, 14.3; IR (thin film) v 2882, 1779, 1734, 1208, 1102, 760, 700 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₁₄H₁₄O₄, 269.0790 found, 269.0789; 99% ee as determined by HPLC (IB, 30:1 hexanes:*i*-PrOH) $t_r = 40.6$ and 42.8 min.

(*S*)-1-phenyl-1H-benzo[f]chromen-3(2H)-one (*Scheme 2*, 15). Prepared according to the general procedure from 2-naphthol and 3-phenylpropiolaldehyde using 10 mol % 1 as a catalyst in 79% yield as a yellow solid. $[\alpha]_D^{20}$ (c 0.60, CHCl₃): +57.34; ¹H NMR (500 MHz, CDCl₃) δ 7.88–7.86 (m, 2H), 7.80 (d, 1H, J = 8.5 Hz), 7.49–7.45 (m, 2H), 7.43 (d, 1H, J = 7.0 Hz), 7.28–7.25 (m, 2H), 7.23–7.20 (m, 1H), 7.13 (d, 2H, J = 7.5 Hz), 4.96 (d, 1H, J = 6.5 Hz), 3.25–3.14 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.2, 150.0, 140.7, 131.2, 131.1, 130.1, 129.4, 128.9,

Page S16 of S62

127.7, 127.6, 127.1, 125.4, 123.2, 117.7, 37.8, 37.6; IR (thin film) v 3061, 1781, 1515, 1209, 1135, 816, 789 cm⁻¹; HRMS (ESI) $[M+Na]^+$ calcd. for C₁₉H₁₄O₂, 297.0891 found, 297.0905; 68% ee as determined by SFC (ASH, gradient 10%–80% *i*-PrOH in CO₂, rate 5%/min) $t_r = 7.4$ and 8.2 min.

An azolium-catalyzed Claisen rearrangement via oxidation of α,β-unsaturated aldehyde

(*S*)-methyl-3-(6-((*tert*-butyldimethylsilyloxy)methyl)-3-hydroxy-4-oxo-4H-pyran-2-yl)-3phenylpropanoate (*Table 1, 2*). As an alternative method, inspired by the work of Studer⁸, 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one (25.6 mg, 0.1 mmol, 1 equiv), cinnamaldehyde (19.8 mg, 0.15 mmol, 1.5 equiv), 3,3',5,5'-tetra-tert-butyl-[1,1'bi(cyclohexylidene)]-2,2',5,5'-tetraene-4,4'-dione (20.4 mg, 0.05 mmol, 0.5 equiv an an oxidant), and 1 (10 mol% as the catalyst) were combined and diluted in toluene (0.1 M) at 40°C overnight. Ring opening of the reaction with MeOH (6 hours at 40°C) afforded product 2: 66% conversion (based on ¹H NMR relative to the starting materials) and 97% ee.

⁽⁸⁾ De Sarkar, S.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132, 1190-1191.

Relative reactivity of *o*,*o*-dichloro and *o*,*p*-dichloro phenylpropiolaldehyde

In a dried 10.0 mL NMR tube, 3-(2,4-dichlorophenyl)propiolaldehyde (10.0 mg, 0.05 mmol, 1.0 equiv), 3-(2,6-dichlorophenyl)propiolaldehyde (10.0 mg, 0.05 mmol, 1.0 equiv) and 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one (13.0 mg, 0.05 mmol, 1.0 equiv) were mixed with 10 mol% of catalyst **18** in $C_6D_6CD_3$ (0.50 mL). The reaction mixture was monitored by ¹H NMR. After 5 hours, the ratio of products was determined from ¹H NMR spectra (below) to be 1.25 (*o,p*-dichloro) to 1.00 (*o,o*-dichloro) products.

1,2 Addition of N-Cbz hydroxamic acid

Prepared according to the general procedure from *N*-Cbz hydroxamic acid and 3phenylpropiolaldehyde using 10 mol % of **1** as the catalyst to afford the product **20** in 53% yield as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.36 (s, 1H), 7.86 (d, 1H, *J* = 16.0 Hz), 7.55– 7.54 (m, 2H), 7.44–7.34 (m, 8H), 6.53 (d, 1H, *J* = 16.0 Hz), 5.25 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 156.5, 148.3, 135.2, 133.8, 131.3, 129.2, 128.8, 128.8, 128.6, 128.5, 113.3, 68.5; IR (thin film) v 3266, 1746, 1633, 1450, 1219, 1118, 766, 697 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd. for C₁₇H₁₅NO₄, 320.0899 found, 320.0861.

Epimerization by an addition of base experiment

Prepared according to the general procedure, except that *N*-methylmorpholine (NMM) (20 mol %) was added as a base. The crude product mixture was purified by preparative TLC (3:1 hexanes:EtOAc) to give **2** (48% ee as determined by HPLC (IB, 9:1 hexanes:*i*-PrOH), $t_r = 7.2$ and 9.6 min. Alternatively, based-induced epimerization of the final adduct could be confirmed by stirring high-enantiomeric excess product in a weak amine base (see table below).

Reaction condition	% ee of the final adduct (from chiral HPLC)
No base	97%
20% AcOH added at $t = 0$	47%
20% NMM added at $t = 0$	48%
20% NMM added at $t = 2$ hours	14%
20% NMM added at t = 24 hours (after the reaction completed by 1 H NMR)	74%

Catalyst counter ions comparison

Preparation: The counter ions exchanges between 2-mesityl-6,7-dihydro-5H-pyrrolo[2,1c][1,2,4]triazol-2-ium chloride (1) and various silver salts (AgOAc, AgClO₄, AgSbF₆, AgOCOCF₃) were performed according to a literature procedure.⁹

Comparison Experiment: A solution of 2-((*tert*-butyldimethylsilyloxy)methyl)-5hydroxy-4H-pyran-4-one (1.0 equiv), 3-(4-chlorophenyl)propiolaldehydeis (1.0 equiv), and 1-(tert-butyl)-4-methoxybenzene (1.0 equiv as internal standard) was prepared using deuterated toluene (with 10% deuterated dichloromethane to ensure complete solubility) and mixed with the precatalyst with different counter ions (X, 0.1 equiv): Cl⁻, OAc⁻, ClO₄⁻, CF₃CO₂⁻, and SbF₆⁻. A control reaction was done using the same solution and the precatalyst with SbF₆⁻ and 20% Nmethylmorpholine (NMM). The reactions were performed in dried NMR tubes at room temperature. Percentage conversions were measured using ¹H NMR by the disappearance of the ynal, from the integration of the peak at 8.90 ppm (1H) against the internal standard peak at 1.22 ppm (9H). The conversion of the ynal was found to be influenced by the counter ion with the

⁽⁹⁾ Kim, J.H.; Jo, K.A.; Son, Y.H.; Park, S.R.; Ahn, K-H.; Kang, E.J. Bull. Korean Chem. Soc. 2009, 30, 2464-2466.

following treand: $OAc^{-} > SbF_{6}^{-}$ with $NMM > Cl^{-} > CF_{3}CO_{2}^{-} > ClO_{4}^{-}$ (trace) > SbF_{6}^{-} (no reaction). The table below compares percent conversions (% conv.) at 1.0, 2.5, and 12 hours.

X (counter ion)	% conv. 1 h	% conv. 2.5 h	% conv. 12 h		
Cl	10	16	70		
OAc ⁻	100	na	na		
$CF_3CO_2^-$	7	10	20		
ClO ₄ ⁻	0	0	trace		
SbF ₆ ⁻	0	0	0		
$SbF_{6}^{-} + NMM(30\%)$	30	35	86		
^a Determined by ¹ H NMR analysis against an internal standard.					

Effect of azolium counterion on conversion.

Experimental rate orders measurements

Rate order for aldehyde: A solution of 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4Hpyran-4-one (1.0 equiv) and 1-(tert-butyl)-4-methoxybenzene (1.0 equiv as internal standard) was prepared using deuterated toluene (with 10% deuterated dichloromethane to ensure complete solubility) and degassed. Then, 2-mesityl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium chloride (0.1 equiv) was added to the solution, and the final solution was transferred to dried NMR tubes containing varied amounts of 3-(2,4-dichlorophenyl) propiolaldehyde: 0.50, 0.75, 1.00, 1.25, and 1.50 equiv. The reactions were performed at room temperature; percentage conversions were measured using ¹H NMR by the disappearance of the ynal from the integration of the peak at 8.85 ppm (1H) against the internal standard peak at 1.22 ppm (9H). The plots of molar concentration of the ynal versus time (hour) were generated; the rates were determined from the slope of each plot.¹⁰ The rate order was calculated from the plot of ln(rate) against ln(aldehyde concentration) to be 0.55 (R² = 0.90). Below, the table reports raw data; the plots shows [aldehyde] vs. time, and the ln[rate] vs. ln[aldehyde].

⁽¹⁰⁾ As a verification of the method validity, the plot of molar concentration of the product versus time (hour) was performed additionally. Percentage deviations of the rates were calculated to be <3.00% for three cases: *para* methyl, no substitution, and *para* chloro ynals.

Bode et al.

	Aldehyde concentration for the reactions (varying aldehyde equiv).					
time (h)	1.50 equiv.	1.25 equiv.	1.00 equiv.	0.75 equiv.	0.50 equiv.	
0.00	0.1430	0.1150	0.0970	0.0650	0.0480	
1.00	0.1320	0.1050	0.0890	0.0590	0.0420	
2.00	0.1280	0.0990	0.0850	0.0550	0.0370	
3.00	0.1210	0.0920	0.0760	0.0500	0.0330	
4.00	0.1060	0.0820	0.0650	0.0430	0.0280	
Rate [M/h]	-8.50x10 ⁻³	-7.90x10 ⁻³	-7.70×10^{-3}	-5.30x10 ⁻³	-4.90x10 ⁻³	
\mathbf{R}^2	0.98	1.00	0.99	1.00	1.00	

Rate order for the catalyst: A solution of 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4Hpyran-4-one (1.0 equiv), 3-(2,4-dichlorophenyl) propiolaldehyde (1.0 equiv), and 1-(tert-butyl)-4-methoxybenzene (1.0 equiv as internal standard) was prepared using deuterated toluene (with 10% deuterated dichloromethane) and degassed. Then the solution was transferred to dried NMR tubes containing varied amounts of the precatalyst (1): 0.10, 0.15, 0.20, 0.25, and 0.30 equiv. The reactions were performed, the percentage conversions were measured, and the plots were generated as described above. The rate order was calculated from the plot of ln(rate) against

	Aldehyde concentration for the reactions (varying precatalyst concentration)					
time (h)/M	30% precat.	25% precat.	15% precat.	10% precat.	5% precat.	
0.00	0.0900	0.0910	0.0920	0.0880	0.0950	
1.00	0.0760	0.0830	0.0850	0.0850	0.0930	
2.00	0.0640	0.0770	0.0780	0.0820	0.0920	
3.00	0.0520	0.0660	0.0680	0.0730	0.0910	
4.00	0.0390	0.0580	0.0570	0.0640	0.0900	
Rate [M/h]	-1.26×10^{-2}	-8.30x10 ⁻³	-8.70x10 ⁻³	-6.00×10^{-3}	-1.20×10^{-3}	
\mathbf{R}^2	1.00	1.00	0.99	0.97	0.99	

ln(aldehyde concentration) to be 1.16 ($R^2 = 0.84$). Below, the table reports raw data; the plots shows [aldehyde] vs. time, and the ln[rate] vs. ln[precatalyst].

Rate order for TBS-kojic acid: A solution of the precatalyst (1, 0.1 equiv) and 1-(tert-butyl)-4methoxybenzene (1.0 equiv as internal standard) was prepared using deuterated toluene (with 10% deuterated dichloromethane) and degassed. Then, 3-(2,4-dichlorophenyl) propiolaldehyde was added to the solution, and the final solution was quickly transferred to dried NMR tubes containing varied amounts of 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one or TBS-kojic acid: 1.0, 1.5, 2.0, 2.5, and 3.0 equiv. The reactions were performed, the percentage conversions were measured, and the plots were generated as described above. The rate order was calculated from the plot of ln(rate) against ln(aldehyde concentration) to be -0.53 ($R^2 = 0.41$). Below, the table reports raw data; the plots shows [aldehyde] vs. time, and the ln[rate] vs. ln[TBS-kojic acid].

	Aldehyde concentration for the reactions (varying equiv of TBS-kojic acid)					
time (h)/M	3.0 equiv	2.5 equiv	2.0 equiv	1.5 equiv	1.0 equiv	
1.00	0.1070	0.1080	0.1040	0.0950	0.0920	
2.00	0.1070	0.1080	0.1040	0.0930	0.0920	
3.00	0.1040	0.1080	0.1000	0.0910	0.0880	
4.00	0.1020	0.1060	0.0910	0.0870	0.0790	
5.00	0.0950	0.1000	0.0800	0.0800	0.0660	
6.00	0.0810	0.0890	0.0650	0.0680	0.0530	
Rate [M/h]	-4.80×10^{-3}	-3.46x10 ⁻³	-7.89×10^{-3}	-5.09×10^{-3}	-8.06x10 ⁻³	
\mathbf{R}^2	0.90	0.85	0.95	0.94	0.95	

Activation parameters measurement and analysis

A solution of 2-((*tert*-butyldimethylsilyloxy)methyl)-5-hydroxy-4H-pyran-4-one (1.0 equiv), 3-(4-chlorophenyl)propiolaldehyde (1.0 equiv), and 1-(tert-butyl)-4-methoxybenzene (1.0 equiv as internal standard), and 2-mesityl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium chloride (1, 2.0 mg, 0.005 mmol, 0.1 equiv) was prepared using 0.5 mL deuterated toluene (with 10% deuterated dichloromethane to ensure complete solubility). The reactions were performed in NMR tubes and placed in the preheated NMR instrument (temp at 30, 35, 40, 45, and 50°C). Percentage conversions were measured using ¹H NMR by the disappearance of the ynal from the integration of the peak at 8.90 ppm (1H) against the internal standard peak at 1.22 ppm (9H).

The plots of molar concentration of the ynal versus time (hour) were generated; the rates were determined from the slope of each plot. The rate constants (k_{obs}) were calculated from the experimentally determined rate law (1). The plot of ln(k/T) vs 1/T (in K) was then generated. Using the Eyring equation (2), the activation enthalpy (ΔH^{\ddagger}) was calculated from the slope to be 15.25 Kcal/mol, while the entropy of activation (ΔS^{\ddagger}) was calculated from the y-intercept to be -25.48 cal/K.mol. The table below reports raw data; the plot below shows ln(k/T) vs 1/T.

$$Rate = k_{obs} [triazolium \ precatalyst]^{1} [RCHO]^{1/2} [kojic \ acid]^{-1/2}$$
(1)

$$ln(k/T) = -(\Delta H^{\ddagger}/RT) + (\Delta S^{\ddagger}/R) + ln(k_B/h)$$
⁽²⁾

where R = the gas constant; $k_B =$ Boltzmann constant; and h = Planck's constant.

	Aldehyde concentration for the reactions (varying temperatures)					
time(s)/T(K)	323 K	318 K	318 K 313 K		303 K	
600	0.0639	0.0715	0.0718	0.0741	0.0681	
900	0.0601	0.0708	0.0712	0.0732	0.0677	
1200	0.0567	0.0692	0.0701	0.0716	0.0670	
1500	0.0537	0.0673	0.0691	0.0703	0.0663	
1800	0.0510	0.0655	0.0682	0.0694	0.0663	
2100	0.0478	0.0641	0.0674	0.0683	0.0659	
2400	0.0466	0.0627	0.0657	0.0674	0.0656	
2700	0.0442	0.0612	0.0649	0.0665	0.0648	
3000	0.0402	0.0597	0.0642	0.0658	0.0647	
3300	0.0384	0.0584	0.0627	0.0644	0.0640	
Rate [M/sec]	-9.21x10 ⁻⁶	-5.08x10 ⁻⁶	-5.08x10 ⁻⁶ -3.41x10 ⁻⁶		-1.44x10 ⁻⁶	
\mathbf{R}^2	0.99	1.00	0.99	0.99	0.98	
k _{obs} [sec ⁻¹]	9.21x10 ⁻⁴	5.08x10 ⁻⁴	3.41x10 ⁻⁴	3.50x10 ⁻⁴	1.44x10 ⁻⁴	
$\ln(k/T)$	$1/T (K^{-1})$	Constants		Parameters		
-12.77	3.096x10 ⁻³	R(cal/Kmol)	1.986	slope	-7679.66	
-13.35	3.145×10^{-3}	$k_{\rm B} ({\rm m}^2 {\rm kg s}^{-2} {\rm K}^{-1}) = 1.38 {\rm x} 10^{-23} {\rm R}^2 {\rm M}^{-1} {\rm R}^{-1}$				
-13.73	3.195x10 ⁻³	h (m ² kg s ⁻¹) 6.63x10 ⁻³⁴ y-intercept 10.93				
-13.69	3.247x10 ⁻³	$\Delta H^{\ddagger} = 15.25 \ (Kcal/mol)$				
-14.56	$3.\overline{300 \times 10^{-3}}$	$\Delta S^{\ddagger} = -25.48 \ (cal/mol.K)$				

Derivation of the rate law for azolium-catalyzed Claisen rearrangement pathway

The unimolecular sigmatropic rearrangement is proposed to be the rate-determining step. Assuming that redox reaction, protonation steps, and 1,2-addition step are fast and irreversible, that is $[cat-RCHO^+] \approx [X]$, the overall rate is defined as:

$$\frac{d[P]}{dt} = k_2[cat - RCHO^+]$$

The equilibrium constant (K_g) for the generation of the active catalyst is defined as:

$$K_g = \frac{[cat][HX]}{[precat^+][X^-]} \text{ or } [precat^+] = \frac{1}{K_g} \frac{[cat][HX]}{[X^-]} \text{ eq 1.}$$

The overall catalyst concentration is defined as:

$$[cat]_0 = [cat] + [precat^+] + [cat - RCHO^+]$$
eq 2.

Substitute eq. 1 into eq. 2 to obtain:

$$[cat]_{0} = [cat] + \frac{1}{K_{g}} \frac{[cat][HX]}{[X^{-}]} + [cat - RCHO^{+}] \text{ or } (1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]})[cat] = [cat]_{0} - [cat - RCHO^{+}]$$

$$[cat] = \frac{[cat]_0 - [cat - RCHO^+]}{1 + \frac{1}{K_g} \frac{[HX]}{[X^-]}}$$
eq 3.

The rate of the catalyst-aldehyde complex can be expressed by:

$$\frac{d[cat - RCHO^{\dagger}]}{dt} = k_1[cat][RCHO] - k_{-1}[cat - RCHO^{\dagger}] - k_2[cat - RCHO^{\dagger}] \qquad \text{eq 4.}$$

Assuming that the concentration of catalyst-aldehyde complex does not change over time (steady state approximation); thus,

$$\frac{d[cat - RCHO^{+}]}{dt} = k_{1}[cat][RCHO] - k_{-1}[cat - RCHO^{+}] - k_{2}[cat - RCHO^{+}] = 0 \qquad \text{eq 5}.$$

Substitute eq. 3 into eq. 5 to obtain:

$$k_{1} \frac{[cat]_{0} - [cat - RCHO^{+}]}{1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]}} [RCHO] - k_{-1} [cat - RCHO^{+}] - k_{2} [cat - RCHO^{+}] = 0$$

$$\frac{k_1}{1 + \frac{1}{K_g} \frac{[HX]}{[X^-]}} [cat]_0 [RCHO] = (k_{-1} + k_2 + \frac{k_1}{1 + \frac{1}{K_g} \frac{[HX]}{[X^-]}} [RCHO]) [cat - RCHO^+]$$

$$[cat - RCHO^{+}] = \frac{\frac{k_{1}}{1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]}} [cat]_{0} [RCHO]}{\frac{1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]}}{k_{-1} + k_{2} + \frac{k_{1}}{1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]}} [RCHO]}}$$

$$[cat - RCHO^{+}] = \frac{[cat]_{0} [RCHO]}{[RCHO] + \frac{k_{-1} + k_{2}}{k_{1}} (1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]})} eq 6.$$

Assuming that the sigmatropic rearrangement is the rate-determining step; thus,

$$\frac{d[P]}{dt} = k_2[cat - RCHO^+]$$
eq 7.

Substituted eq. 6 into the rate equation 7, the rate law may be expressed as:

$$\frac{d[P]}{dt} = k_2 \frac{[cat]_0[RCHO]}{[RCHO] + \frac{k_{-1} + k_2}{k_1} (1 + \frac{1}{K_g} \frac{[HX]}{[X^-]})} eq 8.$$

Where $K_g = \frac{[cat][HX]}{[precat^+][X^-]}$.

Alternatively, eq. 8 may be expressed in terms of the dissociation constant (K_a) of a general acid (HX):

$$K_a = \frac{[H^+][X^-]}{[HX]} \text{ or } \frac{[HX]}{[X^-]} = \frac{[H^+]}{K_a}$$
 eq 9.

Substitute eq. 9 into eq. 8, the rate law may be expressed as:

$$\frac{d[P]}{dt} = k_2 \frac{[cat]_0[RCHO]}{[RCHO] + \frac{k_{-1} + k_2}{k_1}(1 + \frac{1}{K_g K_a}[H^+])}$$
eq 10.

Derivation of the rate law for azolium-catalyzed conjugate addition pathway

The bimolecular conjugation addition is proposed to be the rate-determining step. Assuming that redox and protonation step is fast and irreversible, that is $[cat-RCHO^+] \approx [AC]$, the overall rate is defined as:

$$\frac{d[P]}{dt} = k_3 [cat - RCHO^+][KA]$$

The equilibrium constant (Kg) for the generation of the active catalyst is defined as:

$$K_g = \frac{[cat][HX]}{[precat^+][X^-]} \text{ or } [precat^+] = \frac{1}{K_g} \frac{[cat][HX]}{[X^-]} \text{ eq 11.}$$

The overall catalyst concentration is defined as:

$$[cat]_0 = [cat] + [precat^+] + [cat - RCHO^+]$$
eq 12.

Substitute eq. 11 into eq. 12 to obtain:

$$[cat]_{0} = [cat] + \frac{1}{K_{g}} \frac{[cat][HX]}{[X^{-}]} + [cat - RCHO^{+}] \text{ or } (1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]})[cat] = [cat]_{0} - [cat - RCHO^{+}]$$

$$[cat] = \frac{[cat]_0 - [cat - RCHO^+]}{1 + \frac{1}{K_g} \frac{[HX]}{[X^-]}}$$
eq 13.

The rate of the catalyst-aldehyde complex can be expressed by:

$$\frac{d[cat - RCHO^+]}{dt} = k_1[cat][RCHO] - k_{-1}[cat - RCHO^+] - k_2[cat - RCHO^+]$$
eq 14.

Assuming that the concentration of catalyst-aldehyde complex does not change over time (steady state approximation); thus,

$$\frac{d[cat - RCHO^{+}]}{dt} = k_{1}[cat][RCHO] - k_{-1}[cat - RCHO^{+}] - k_{2}[cat - RCHO^{+}] = 0 \qquad \text{eq 15.}$$

Substitute eq. 13 into eq. 15 to obtain:

$$k_{1} \frac{[cat]_{0} - [cat - RCHO^{+}]}{1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]}} [RCHO] - k_{-1} [cat - RCHO^{+}] - k_{2} [cat - RCHO^{+}] = 0$$

$$\frac{k_1}{1 + \frac{1}{K_g} \frac{[HX]}{[X^-]}} [cat]_0 [RCHO] = (k_{-1} + k_2 + \frac{k_1}{1 + \frac{1}{K_g} \frac{[HX]}{[X^-]}} [RCHO]) [cat - RCHO^+]$$

$$[cat - RCHO^{+}] = \frac{\frac{k_{1}}{1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]}} [cat]_{0} [RCHO]}{k_{-1} + k_{2} + \frac{k_{1}}{1 + \frac{1}{K_{g}} \frac{[HX]}{[X^{-}]}} [RCHO]}$$

$$[cat - RCHO^{+}] = \frac{[cat]_{0}[RCHO]}{[RCHO] + \frac{k_{-1} + k_{2}}{k_{1}}(1 + \frac{1}{K_{g}}\frac{[HX]}{[X^{-}]})} eq 16.$$

Assuming that the bimolecular conjugate addition is the rate-determining step; thus,

$$\frac{d[P]}{dt} = k_3[cat - RCHO^+][KA]$$
eq 17.

Substitute eq. 16 into eq. 17, the rate law may be expressed as:

$$\frac{d[P]}{dt} = k_3 \frac{[cat]_0 [RCHO] [KA]}{[RCHO] + \frac{k_{-1} + k_2}{k_1} (1 + \frac{1}{K_g} \frac{[HX]}{[X^-]})} eq 18.$$

Where
$$K_g = \frac{[cat][HX]}{[precat^+][X^-]}$$
.

Alternatively, eq. 18 may be expressed in terms of the dissociation constant (K_a) of a general acid (HX):

$$K_a = \frac{[H^+][X^-]}{[HX]} \text{ or } \frac{[HX]}{[X^-]} = \frac{[H^+]}{K_a}$$
 eq 19.

Substitute eq. 19 into eq. 18, the rate law may be expressed as:

$$\frac{d[P]}{dt} = k_3 \frac{[cat]_0[RCHO][KA]}{[RCHO] + \frac{k_{-1} + k_2}{k_1} (1 + \frac{1}{K_g K_a} [H^+])}$$
eq 20.

Page S33 of S62

Page S34 of S62

Page S35 of S62

Page S37 of S62

Page S38 of S62

Page S39 of S62

Page S40 of S62

Page S41 of S62

Page S42 of S62

Bode et al.

Bode et al.

Page S44 of S62

44

Supporting Information

Page S45 of S62

Page S46 of S62

Bode et al.

47

173 898 171 461 166.768	146.948 142.413 134.908 129.260 129.126	108.601	6,149 1449	52.103	33.220 25.849 18.327	-5.387	Current Data Parameters NAME I-JM-50prepC EXPNO 2 PROCHO 1 Γ_2 - Acquisition Parameters Date Date 20050526 Time 16.23 HISTRUM spect PROBHD sgg30 TD 65336 SOLVENT CDC13 HS 61 DSM 27561.604 NM 295761.504 DSM 2050 DW 16.300 DE 6.30 DE 6.50 DE 206.6 DI 2.00000000 DE 2.6.6 D1 2.00000000 D1 2.00000000 D1 2.00000000 D1 1.8959595 D2 1
			ı				$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
							MeO OTBS
		20 110 100	90 80 70 6	,		0 ppm	- 1

Bode et al.

Page S48 of S62

Supporting Information

Page S49 of S62

Page S51 of S62

Page S52 of S62

Page S53 of S62

Page S54 of S62

Page S55 of S62

Page S56 of S62

Page S57 of S62

Page S58 of S62

Supporting Information

Page S59 of S62

Page S60 of S62

Page S61 of S62

Page S62 of S62

Page S36 of S62