1 FIGURE LEGENDS SUPPLEMENTARY DATA

2 Figure S1. Halo assay with catalytic active and inactive Ste24 - Different MATa cells (wild-3 ste24 Δ , ste 24Δ rce 1Δ , $rcel\Delta$, $ste24\Delta rce1\Delta \quad pRS415ste24,$ type, ste24 Δ rce1 Δ , $pRS415ste24^{E296G}$, $ste24\Delta rce1\Delta pJJH71-ZMPSTE24$ and $ste24\Delta rce1\Delta pJJH71-TcSTE24$) 4 5 were grown overnight in liquid YPD medium and adjusted to a final concentration of 5×10^9 6 cells/ml. Then, 1,5 µl of each suspension was spotted onto YPD media at 42°C containing 7 0.04% Triton X-100 and 2×10^6 cells of the *MAT* α sst2 Δ strain cells. Cells were incubated at 8 30°C for 3 days. Grayscales were inverted for a better visualization of the halos. 9 **Figure S2.** Immunoblot detecting Chs3-13Myc in transformed wild-type and ste24 Δ cell 10 *extracts.* Total cellular extracts obtained from wild-type (WT) and *ste24* Δ cells expressing

Chs3-13Myc from centromeric plasmids were subjected to SDS-PAGE and subsequently
blotted onto nitrocellulose membranes for immunostaining with anti-cMyc antibodies.
Standard proteins are indicated with molecular masses given in kDa. MC, mock control using
wild-type yeast cell transformed with the empty pRS415 vector.

15

16

rce1∆ ste24∆ rce1∆ ste24∆ ste24∆ rce1∆ ste24∆ TcSTE24 ZMPSTE24

KDa

WT ste24 MC

Primer	Sequence 5' →3'	Amplified sequence	
Primer for amplifying different cDNAs			
chs3pro(KpnI)-F	TACTCAGGTACCAAAACGCGTTATTGGCGCTGG	chs3 and chs3 promoter	
chs3(SacII)-R	TACTCACCGCGGTGCAACGAAGGAGTCACTTTC	chs3 without stop codon	
chs3(EcoRI)-R	TACTCAGAATTCAAAACGCGTTATTGGCGCTGG	chs3	
13Myc(SacII)-F	TACTCACCGCGGCCCGGGTTAATTAACGGT	13Myctag	
13Myc(SacI)-R	TACTCAGAGCTCTTCACTAGTGATTGATAAATT	13Myctag	
GALpro(KpnI)-F	TACTCAGGTACCAGATCTGTAAAGAGCCCCATT	GAL1 promoter	
GALpro_ATG_Flag	TACTCAGTCGACCTTGTCGTCATCGTCTTT	GAL1 promoter	
(SalI)-R	GTAGTCAGACATTTTGAGATCCGGGTT		
GFP(SacII)-F	TACTCACCGCGGCGGATCCCCGGGTTAATTAA	gfp	
GFP(SacI)-R	TACTCAGAGCTCTATTCTGGGCCTCCATGTCGC	gfp	
ste24-F	TACTCAGTCGACTTTGATCTTAAGACGATTCTC	ste24	
ste24-R	TACTCACCGCGGTTAGTTTTTCTTCTTTTCACT	ste24	
ste24-F(BamHI)	TACTCAGGATCCATGTTTGATCTTAAGACGATT	ste24	
ste24_9His-R(SpeI)	TACTCAGCATGCCTAGTGGTGGTGGTGGTGGTGG	ste24	
	TGGTGGTGGTTTTTTCTTCTTTTCACT		
Zmpste24(BamHI)-F	TACTCAGGATCCATGGGGATGTGGGCATCGCTG	Zmpste24	
Zmpste24(SphI)-R	TACTCAGCATGCTCAGTGTTGCTTCATAGTTTT	Zmpste24	
Tcste24(BamHI)-F	TACTCAGGATCCATGATCACCTTAAACGAGGTT	Tc_ste24	
TcSTE24(SphI)-R	TACTCAGCATGCTTAGTCCTTCTTCTGCAGTGC	Tc_ste24	
Primer for homologous recombination			
chs4 ^{C693S} -F	AGAAGGATAAACAAGGTAAAAAAAAAAAAAAA	<i>chs4</i> ^{C693S}	
0(0)28	CTCTGTAATTATGTAGGGCGCGCCAC TTCTAAA	0/025	
chs4 ^{C6938} -R	GTGTAAACTGTTGCACCTATAAAGAATGAAAAC	<i>chs4</i> ^{C693S}	
	AATCTAGCCGCATAGGCCACTAGTGGATCTG		
Primer for site direct	ted mutagenesis	H260G	
ste24 ^{E269G} -F	CGGCTGTTTTGGCCCATGGAATCGGTCACTGGC	ste24	
ste24 ^{E2090} -R	GCCAGTGACCGATTCCATGGGCCAAAACAGCCG	ste24	
Primer for yeast two-hybrid analyses			
chs3-C1 (EcoRI)-F	TAGTCAGAATTCATGACCGGCTTGAATGGAGAT	<i>chs3</i> -C1 (aa 1-165)	
chs3-C1 (BamHI)-R	TACTCAGGATCCTGTATCATTCGTTTCCTTTCT	<i>chs3</i> -C1 (aa 1-165)	
chs3-C3 (EcoRI)-F	TAGTCAGAATTCACCGTTTGTAGTAGTTCGAAA	<i>chs3</i> -C3 (aa 226-452)	
chs3-C3 (BamHI)-R	TAGTCAGGATCCATCAGAGGCAATACAACCGAC	<i>chs3</i> -C3 (aa 226-452)	
chs3-C4 (EcoRI)-F	TAGTCAGAATTCCGTTGGACTGTAGCTAGGAAA	<i>chs3</i> -C4 (aa 476-1000)	
chs3-C4 (BamHI)-R	TAGTCAGGATCCCGTAGAATTAATCCATCTTCG	<i>chs3</i> -C4 (aa 476-1000)	
chs3-C7 (EcoRI)-F	TAGTCAGAATTCAAATTTGATGACTTCTCATGG	<i>chs3</i> -C7 (aa 1109-1165)	
chs3-C7 (BamHI)-R	TAGTCAGGATCCTGCAACGAAGGAGTCACTTTC	<i>chs3</i> -C7 (aa 1109-1165)	
ste24-S2 (EcoRI)-F	TAGTCAGAATTCAGACAGTACCAGAAGCTATCT	<i>ste24</i> -S2 (aa 36–95)	
ste24-S2 (BamHI)-R	TACTCAGGATCCTTTAGGGAAGAGGTCGTATTT	ste24-S2 (aa 36–95)	
ste24-S6 (EcoRI)-F	TAGTCAGAATTCTTTAATAAGTTCACTCCATTG	ste24-S6 (aa 221-304)	
ste24-S6 (BamHI)-R	TACTCAGGATCCTTTTTGCCAGTGACCGATTTC	ste24-S6 (aa 221-304)	
ste24-S8 (EcoRI)-F	TAGTCAGAATTCAGTTTAATTTCCAGAACTCAT	ste24-S8 (aa 384-453)	
ste24-S8 (BamHI)-R	TACTCAGGATCCGTTTTTCTTCTTTTTCACTAAC	ste24-S8 (aa 384-453)	

Table S1. Oligonucleotide primers

Table S2. Plasmids

Plasmid	Description	Source/reference
pAG503	centromeric, G418 resistance	Laboratory collection
pAG503 CHS3	Chs3 under endogenous promoter control	This study
pAG503 GAL-STE24↑	Ste24 under Gal1 promoter control	This study
pRS415	centromeric, Leu2	Stillman D. J.
pRS415ste24	Ste24, endogenous promoter	This study
pRS415ste24 ^{E269G}	Ste24 ^{E269G} , endogenous promoter	This study
pRS415 CHS3	Chs3, endogenous promoter control	This study
pRS415 CHS3 Myc	Chs3, endogenous promoter, C-terminal 13Myc-tag	This study
pGREG576	centromeric, G418 resistance, <i>Ura3</i> , Gal promoter, GFP	Euroscarf (Jansen et al., 2005)
pGREG576 CHS4	Chs4, Gal promoter, N-terminal GFP	This study
pGREG576 CHS4 ^{C693S}	Chs4 ^{C693S} , Gal promoter, N-terminal GFP	This study
pJJH71	2µ,PFK2 promoter, Ura3	(Raben et al., 1995)
pJJH71 ScSTE24	STE24, <i>PFK2</i> promoter	This study
pJJH71 ZMPSTE24	ZMPSTE24, <i>PFK2</i> promoter	This study
pJJH71 TcSTE24	TcSTE24, <i>PFK2</i> promoter	This study
pFA6a-GFP(S65T)-KanMX4	G418 for homologous recombination	Laboratory collection
pGADT7	Bait vector, Amp ^r , <i>LEU2</i> , DNA-activation domain	Clontech
pGAD-C1	Bait vector, chs3 aa 1-165 (C1)	This study
pGAD-C3	Bait vector, chs3 aa 226-452 (C3)	This study
pGAD-C4	Bait vector, chs3 aa 476-1000 (C4)	This study
pGAD-C7	Bait vector, chs3 aa 1109-1165 (C7)	This study
pGAD-S2	Bait vector, ste24 aa 36–95 (S2)	This study
pGAD-S6	Bait vector, ste24 aa 221-304 (S6)	This study
pGAD-S8	Bait vector, ste24 aa 384-453 (S8)	This study
pGBRT7	Prey vector, Kan ^r , <i>TRP1</i> , DNA-binding domain	Clontech
pGBR-C1	Prey vector, chs3 aa 1-165 (C1)	This study
pGBR-C3	Prey vector, chs3 aa 226-452 (C3)	This study
pGBR-C4	Prey vector, chs3 aa 476-1000 (C4)	This study
pGBR-C7	Prey vector, chs3 aa 1109-1165 (C7)	This study
pGBR-S2	Prey vector, ste24 aa 36–95 (S2)	This study
pGBR-S6	Prey vector, ste24 aa 221-304 (S6)	This study
pGBR-S8	Prey vector, ste24 aa 384-453 (S8)	This study