Supplementary Methods and Results

Immunoblotting

Hearts were rapidly excised and snap-frozen in liquid nitrogen. Samples were homogenized in protein extraction buffer (50 mmol/L Tris-HCl; pH 7.5, 1 mmol/L EDTA, 1 mmol/L EGTA, 1% (w/v) Triton X-100, 0.1 % β-mercaptoethanol, 1 mmol/L sodium orthovanadate, 50 mmol/L sodium fluoride, 5 mmol/L sodium pyrophosphate and protease inhibitor tablets (Complete®, Rosh Applied Science), 1 Tab/50 ml of buffer. One millilitre of extraction buffer was used per 100 mg of frozen tissue. The homogenates were centrifuged at 4 °C for 10 min at 13,000 g to remove insoluble fraction and the supernatant was used for electrophoresis. Protein content was estimated using a Bio-Rad Protein Assay Kit. Twenty micrograms of protein were electrophoresed on a 10 % polyacrylamide gel and then blotted onto a polyvinylidene difluoride membrane. After blocking with 5 % non-fat milk, membranes were incubated with primary antibodies and then appropriate secondary antibodies. Primary antibodies used were against phospho-GSK-3a/B (Ser21/9) (#9331), total-Akt (#9272), phospho-Akt (Ser473) (#9271) (all from Cell Signalling), total-GSK-3α/β (#05-903) (Upstate), total-glycogen synthase (#MAB3106) (Chemicon) and phospho-glycogen synthase (Ser 641 and 645) (#44-1092G) (BIOSOURCE) at dilutions of 1:1000. Proteins were visualized using an ECL kit (Amersham).

Real-time RT-PCR

```
The following primers were used (5'-3'):
```

β-actin forward CGTGAAAAGATGACCCAGATCA, reverse TGGTACGACCAGAGGCAT-ACAG; ANF forward ATTGGAGCCCAGAGTGGACTA, reverse CCTTTTCCTCCTTGGC-TGTTATC; α-skeletal actin forward TGACCACAGCTGAACGTGAGAT, reverse CAGGGA-GGAGGAAGAGGCAG; pro-collagen IαI forward CCTCAGGGTATTGCTGGACAAC,

1

reverse TTGATCCAGAAGGACCTTGTTTG; pro-collagen IIIαI forward AGGAGCCAGTG-GCCATAATG, reverse TGACCATCTGATCCAGGGTTTC; fibronectin forward CCGGTG-GC TGTCAGTCAGA, reverse CCGTTCCCACTGCTGATTTATC;

Invasive Pressure-volume analysis

In vivo measurements were performed using a 1.4F micromanometer-tipped pressurevolume catheter (SPR-839, Millar Instruments) inserted into the cavity of the left ventricle. Mice were anesthetized at day 14 post-pump insertion with 2% isoflurane/oxygen inhalation and ventilated by tracheal intubation. The apex of the left ventricle was exposed via a transdiaphragmatic approach and cannulated. Pressure-volume (PV) loops were acquired, as previously described.^{1, 2} Pre-load pressure-volume relationship was determined by transient occlusion of the inferior vena cava.

Cardiac cine-MRI

Imaging was performed on a 3T Philips Achieva MR scanner using a dedicated cardiac software package (R2.5.3) and clinical gradient system (30mT/m, 200mT/m/ms). Mice were anesthetized under inhalational and maintained anesthesia via nose-cone (2%)Isoflurane/oxygen). Rectal temperature was monitored and body temperature maintained at 37°C by warm air flow (using an adapted MRI-compatible heater system, SA Instruments Inc., Stony Brook, NY). Cine MRI was performed with prospective ECG triggering and respiratory gating using a spoiled gradient echo technique. For localization of the heart, a low-resolution gradient echo scout scan was performed in the coronal and transverse orientation. Highresolution (0.2 x 0.2 x 1mm) short axis, two and four chamber (biplane) views were then acquired using the following imaging parameters: FOV = 35mm, matrix = 160, slice thickness = 1mm, TR/TE = 11/5.3ms, flip angle = 20° , 1 line / RR interval, temporal resolution = 11ms, NSA = 2. Segment v1.702 software (http://segment.heiberg.se) was used for off-line analysis; manual endocardial and epicardial mapping was performed for each 1mm slice at end-diastole and end-systole, from which ventricular volumes, ejection fraction and ventricular mass were determined. Ventricular wall thickness was measured at the mid papillary level in end-diastole and end-systole.

Reference List

- Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol (2005) 289(2):H501-H512.
- (2) Tam CW, Husmann K, Clark NC, Clark JE, Lazar Z, Ittner LM *et al.* Enhanced vascular responses to adrenomedullin in mice overexpressing receptor-activity-modifying protein
 2. Circ Res (2006) **98(2)**:262-270.

CVR-2009-1208R2

Supplement Table 1 Haemodynamic parameters in isolated Langendorff-perfused hearts of WT and KI mice subjected to acute isoproterenol perfusion. Peak (max), trough (min) and $logEC_{50}$ values are given for heart rate (HR), left ventricular developed pressure (LVDP) and contractile performance (dP/dt). Mean values \pm SEM, n= n=6/group, ns between groups in all categories.

	HR (bpm)			LVDP (mmHg)				dP/dt (mmHg/s)			
	Min	Max	LogEC ₅₀	Min	Max	LogEC ₅₀		Min	Max	LogEC ₅₀	
WT	387 <u>+</u> 32	595 <u>+</u> 13	-7.7 <u>+</u> 0.7	68.1 <u>+</u> 4.5	110.5 <u>+</u> 12.3	-7.7 <u>+</u> 0.7		2905 <u>+</u> 400	7909 <u>+</u> 714	-7.7 <u>+</u> 0.7	
KI	455 <u>+</u> 33	552 <u>+</u> 23	-7.7 <u>+</u> 1.0	68.4 <u>+</u> 3.5	104.3 <u>+</u> 8.7	-7.7 <u>+</u> 0.7		2923 <u>+</u> 309	7363 <u>+</u> 915	-7.7 <u>+</u> 0.7	

CVR-2009-1208R2

Supplement Table 2: Cardiac MRI. Structural and functional changes with chronic ISO/vehicle control at 2 weeks (Day 14) and in parallel experiments at a further 2 weeks following pump removal (Day 28). Respiratory- and ECG-gated images were acquired under isoflurane anesthesia. LVVI=left ventricular volume index, LVMI=left ventricular mass index, EDVI=end diastolic volume index, ESVI=end systolic volume index, SVI=stroke volume index, HR=heart rate, CI=cardiac index, EF=ejection fraction, LVd/s= mean left ventricular wall thickness diastole/systole, SWT=systolic wall thickening. n=6/group, *p<0.05 vs CON within genotype; [†]p<0.05 vs genotype at each time point.

	GSK-3 WT		GSK-3 KI		GSK	-3 WT	GSK-3 KI		
		2 weeks Trea	atment (Day 14)			2 weeks Reco	overy (Day 28)	ery (Day 28)	
	CON	ISO	CON	ISO	CON	ISO	CON	ISO	
LVVI (ml/g)	2.8 <u>+</u> 0.1	3.5 <u>+</u> 0.2*	2.7 <u>+</u> 0.1	3.1 <u>+</u> 0.1	2.7 <u>+</u> 0.1	2.9 <u>+</u> 0.2	2.8 <u>+</u> 0.3	3.1 <u>+</u> 0.4	
LVMI (mg/g)	2.9 <u>+</u> 0.1	3.6 <u>+</u> 0.2*	2.9 <u>+</u> 0.1	3.2 <u>+</u> 0.1	2.8 <u>+</u> 0.1	3.0 <u>+</u> 0.2	3.0 <u>+</u> 0.4	3.3 <u>+</u> 0.4	
EDVI (µl/g)	1.6 <u>+</u> 0.1	1.6 <u>+</u> 0.2	1.7 <u>+</u> 0.1	$3.1 \pm 0.2^{*^{\dagger}}$	1.4 <u>+</u> 0.04	1.3 <u>+</u> 0.1	1.7 <u>+</u> 0.2	1.5 <u>+</u> 0.3	
ESVI (µl/g)	0.7 <u>+</u> 0.1	1.3 <u>+</u> 0.2*	0.8 <u>+</u> 0.1	1.7 <u>+</u> 0.2*	0.6 <u>+</u> 0.1	0.8 <u>+</u> 0.1	0.8 <u>+</u> 0.1	0.7 <u>+</u> 0.2	
SVI (µl/g)	0.9 <u>+</u> 0.04	0.3 <u>+</u> 0.1*	0.9 <u>+</u> 0.1	$1.4 \pm 0.1^{*^{\dagger}}$	0.8 <u>+</u> 0.1	0.5 <u>+</u> 0.1*	0.9 <u>+</u> 0.1	0.8 <u>+</u> 0.1	
HR	511 <u>+</u> 10	514 <u>+</u> 8	517 <u>+</u> 10	529 <u>+</u> 7	516 <u>+</u> 12	422 <u>+</u> 8* [†]	508 <u>+</u> 8	506 <u>+</u> 8	
CI (µl/min.g)	483 <u>+</u> 21	164 <u>+</u> 29*	458 <u>+</u> 38	713 <u>+</u> 61* [†]	406 <u>+</u> 48	213 <u>+</u> 27* [†]	440 <u>+</u> 29	404 <u>+</u> 51	
EF (%)	58 <u>+</u> 2	$20 \pm 4^{*^{\dagger}}$	53 <u>+</u> 2	44 <u>+</u> 4	57 <u>+</u> 6	39 <u>+</u> 5	53 <u>+</u> 4	51 <u>+</u> 4	
LVd (mm)	0.9 <u>+</u> 0.04	$1.2 \pm 0.1^{*^{\dagger}}$	0.9 <u>+</u> 0.04	0.9 <u>+</u> 0.03	1.0 <u>+</u> 0.02	1.0 <u>+</u> 0.04	0.9 <u>+</u> 0.1	1.0 <u>+</u> 0.03	
LVs (mm)	1.4 <u>+</u> 0.04	1.4 <u>+</u> 0.1	1.4 <u>+</u> 0.03	1.3 <u>+</u> 0.1	1.5 <u>+</u> 0.1	1.3 <u>+</u> 0.04*	1.3 <u>+</u> 0.1	1.5 <u>+</u> 0.1	
SWT (%)	58 <u>+</u> 5	16 <u>+</u> 2*	53 <u>+</u> 8	44 <u>+</u> 9	53 <u>+</u> 4	29 <u>+</u> 4* [†]	54 <u>+</u> 8	53 <u>+</u> 6	