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Text S4: The MDL Principle and the Clustering of Multiple Alignments

Once one has constructed or been given a multiple alignment of related sequences, it is
sometimes desirable to divide it into several subalignments, perhaps representing subfamilies.
The MDL principle suggests how this may best be done. Consider a fixed alignment (assumed
to be accurate) of related segments from M sequences. This alignment of M segments may be
divided into anywhere from 1 to M classes, and the division into i classes may be assigned a prior
probability πi. Usually there is no reason to favor one number of classes over another, and the πi

may be set to a uniform value of 1/M , but this is not necessary and one may for example prefer
a geometric distribution. Assigning the sequences to G classes requires M indicator parameters
Ii, each with a range 1 to G. The description length of these parameters is M log G − log G !
bits, where the second term recognizes that the labels on the classes are arbitrary and may be
permuted. It is possible for this increase in the description length of the theory to be offset by
a decrease in the description length of the data, which may arise when a single log-odds score is
replaced by several. Thus we should choose G and the M associated indicator parameters Ii to
minimize

DLG = M log G− log G !− log πG −
G∑

i=1

Si , (1)

where Si is the log-odds score of class i. For each G beginning with 2, one may use a Gibbs
sampling algorithm to optimize the Ii. Note that here, the sampler is choosing only class
assignment, not realigning the sequences. For uniform πi, we have found that as G increases,
once DLG begins to decrease, it almost never increases again.

If the segments are weighted to reflect correlations, we argue that M in formula (1) should
represent the effective rather than the actual number of segments, because the Ii will not be
independent. For example, consider the extreme case in which two identical segments A and
B are each assigned weight 1/2, but all other segments are assigned weight 1. We would like
the minimization of (1) to produce the same result it would if segment B were dropped, and
segment A were given weight 1. Assuming segments A and B are assigned to the same class, the
log-odds score for this class will, by construction, be the same as if only sequence A with weight
1 had been included. However, unless M in formula (1) is defined to reflect sequence weights,
DLG will vary for the two cases, perhaps thereby leading to different optimal values of G.

With several differences, an analog of this procedure has been proposed previously [1, 2].
We consider these differences, which touch upon all four terms of equation (1). (i) It was not
previously suggested that M should reflect segment weights, as discussed above. (ii) The term
− log G ! was previously omitted; this can be seen as a minor error in analysis. (iii) The term
− log πG was previously omitted. This new term is a minor generalization, and has no effect
if the πi are chosen to be uniform. (iv) Using our notation, the previous analysis omitted the
P (~x) terms in equation (1) from its analog of the Si in equation (1). When the alignment is
fixed for all G, this is a distinction without a difference, because the inclusion of the P (~x) terms
effects all the DLG equally. However, as we discuss below, one may allow the alignment to vary
with G, in which case it is necessary to include the P (~x). (v) Some previous approaches choose
the Ii through the construction of an evolutionary tree relating the segments, and cutting it
at varying depths. This ensures that the classes chosen for one G can always be nested within
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those chosen for a smaller G′. However, there is no need for this restriction, and we have found
that it is frequently violated by optimal classes for varying Gs. For many applications, the
construction of a tree relating the classes for varying Gs may bring added value, but it is not
always useful, well defined, or indeed appropriate. A Gibbs sampling procedure for optimizing
the Ii is heuristic, as is the tree construction procedure. However, it is less likely to be trapped
in suboptimal solutions, and should be of sufficient speed for most practical problems. More
sophisticated sampling algorithms are also possible [3].

The optimal extent of local optimal alignment may depend upon just which sequences are
included. However, given a fixed multiple alignment, it is possible to optimize the starting and
stopping positions, and implied width W , of the alignment separately for each G. This requires
the fitting of additional parameters, but so long as there is but one optimization for each G,
applicable to all classes, the description lengths of the new parameters do not vary with G, and
may therefore be effectively ignored.
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