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I. MODEL CAPSID GEOMETRIES

The preferred capsid geometries used in this work are cubes
with side lengths in the range Nside ∈ [7, 12], which have re-
spective circumferences of ncirc ∈ [24, 44]. The number of
subunits in the lowest energy capsid can be related to the pre-
ferred circumference by Nc = (ncirc/4+1)3− (ncirc/4−1)3,
which gives Nc ∈ [218, 728]. For the angle tolerance δ =
π/30 used in this work, it is common for capsids to form
as cuboids rather than perfect cubes, with some side lengths
longer or shorter by one subunit than the preferred side length;
we note that this variability is small compared to the size vari-
ability observed for immature retrovirus capsids. As noted
in the main text, the interaction geometry ensures that a sub-
unit dimer will have the same interaction free energy for any
lattice position and dimer orientation, but in a capsid the 8
corner subunits have one fewer interaction partners than other
subunits.

II. POLYMER MODEL DETAILS

Polymer segments occupy only a single lattice site and can
have backbone bonds to nearest or next nearest neighbors,
with allowed bond lengths of 1 and

√
2, respectively. During

dynamics, polymer monomers undergo trial displacements to
nearest neighbor lattice sites according to the same algorithm
as capsid subunits, with acceptance based on the Metropolis
criteria. However, two bonds of length

√
2 may cross, form-

ing an X shape. To preserve non-self-intersecting polymer
dynamics, such crossings were explicitly checked for and re-
jected. All allowed polymer bonds have the same energy in
the model.

To maintain computational feasibility with extremely long
polymers, some simulations have a box side-length that is
shorter than the full extension of the polymer. The side
length L was chosen based the relationship between polymer
length Np and the confinement free energy Fconf of an un-
encapsidated polymer Fconf ∼= N

9/4
p L−15/4 [1], to maintain

Fconf ≤ 4kBT (which is insignificant compared to total bind-
ing energies and entropies) and L ≥ 23. There were no ob-
served instances of multiple polymer images interacting with
an assembling capsid.

Radius of gyration. To verify that this modification of the
bond fluctuation model reproduces the statistics of an ex-
cluded volume polymer, we measured the average radius of
gyration as a function of polymer length. The polymer model
exhibits the radius of gyration Rg scaling with length expected
for an excluded volume polymer, Rg ∼ N0.6

p , as shown in Fig.
S8. As the strength of attractions increases, the solvent qual-
ity decreases from good to theta to poor, as indicated by the
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FIG. 8: The average radius of gyration is shown for isolated polymers
as a function of Np for several values of the polymer-polymer attrac-
tion εpp. The solid lines show a fit of the expected scaling for a good
solvent: Rg ∼ N0.6

p for εpp = 0 and Rg ∼ N0.5
p for εpp = 0.05kBT .

scaling of Rg with Np.
Capsid-polymer interactions. As explained in the main

text, a capsid subunit and a polymer segment must satisfy
two conditions to experience a favorable interaction. First,
the polymer orientation vector, which has length 1 (in units
of the lattice spacing) and has its origin at the center of the
polymer segment lattice site, must end in the lattice site occu-
pied by capsid subunit. Secondly, the negative of the capsid
subunit orientation vector, also of length 1, must end in the
lattice site occupied by the polymer segment. This combina-
tion restricts interactions between polymer segments and cap-
sid subunits to those that are the 26 nearest, next-nearest, or
next-next-nearest neighbors, as is the case for capsid subunit-
subunit interactions.

III. SUBUNIT SLIDING ALGORITHM

The one-dimensional diffusion of subunits along the poly-
mer, or subunit sliding, is represented with a special class
of Monte Carlo moves in which an adsorbed capsid subunit
moves forward or backward by one polymer segment with-
out unbinding from the polymer. As discussed in Refs. [2–
6], the one-dimensional diffusion constant is unknown and
could vary over a large range depending on the details of
how subunits and polymers interact. We therefore consider
a range of one-dimensional diffusion constants, which are
controlled in our simulations by varying the relative frequen-
cies of subunit sliding moves and ordinary diffusion moves.
The probability for choosing a sliding move is given by
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FIG. 9: Packaging efficiencies are shown as a function of time and
polymer length Np for a capsid with a preferred size Nc = 488 and
εpc = 5.75kBT .

(rsNbound)/(Ntotal + rsNbound), where rs = D1D/D3D is the
sliding rate (one-dimensional diffusion constant) relative to
the three-dimensional diffusion constant (D3D), Nbound is the
number of subunits associated with the polymer, and Ntotal is
the total number of subunits. Sliding moves do not count to-
ward the number of moves needed for a complete timestep
(Monte Carlo sweep).

If a sliding move is selected, a capsid subunit is chosen at
random from all the capsid subunits bound to a polymer, and
a sliding direction (forward or backward) along the polymer
is chosen at random. If no polymer segment exists in that di-
rection, the move is immediately rejected. Otherwise, a new
orientation vector is chosen at random from the unit sphere
for the polymer segment, the capsid subunit is moved to the
lattice site at which the new polymer orientation vector ends,
and a new orientation vector for the capsid subunit is chosen
from the unit sphere. If the negative of the capsid subunit ori-
entation vector does not end in the lattice site occupied by the
polymer segment, the process, starting with choice of orien-
tation vector for the polymer segment, is repeated until the
polymer segment and capsid subunit can be bonded accord-
ing to the criteria listed in the previous section. Finally, a new
orientation is chosen from the unit sphere for the polymer sub-
unit that was left behind by the capsomer (this step is neces-
sary to ensure detailed balance). The move is then accepted or
rejected based on the total change in energy for all these oper-
ations; any subunit-subunit or subunit-segment overlaps that
result from the move correspond to infinite energy and lead to
rejection.

For polymer bond configurations in which two polymer
segments are separated by a single lattice site, it is possible
for three-dimensional diffusion moves to move a capsid sub-
unit along the polymer. These moves, which are relatively
rare, are not affected by the special sliding moves.
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FIG. 10: The probability of partial-capsid intermediate dissolution as
a function of cluster size. The fraction of clusters that disassembled
(reached size N ≤ 4) before assembling (reaching size N ≥ 50) are
shown for Np = 300, εpc = 5.75kBT , and N = 488. Cluster fates
were averaged over the assembly trajectories discussed in the main
text.

IV. THE TIME DEPENDENCE OF PACKAGING
EFFICIENCIES

Packaging efficiencies are shown as functions of time and
polymer length in Fig. S9.

V. CAPSID NUCLEATION

We define the critical nucleus size nnuc as the smallest num-
ber of assembled subunits that are more likely to assemble
than to disassemble. The critical nucleus size was estimated
by tracking the fate of clusters in assembly trajectories un-
til they disassemble (defined as reaching a size of N ≤ 4)
or assemble. To expedite the calculation, clusters were de-
fined as assembled upon reaching a size of N = 50 subunits,
from which subsequent disassembly was never observed for
relevant parameters. The disassembly probability is shown
as a function of cluster size for representative parameters in
Fig. S10, for which the critical nucleus size is 8 subunits. We
find that estimated values for the critical nucleus size vary
only slightly with polymer length or preferred capsid curva-
ture; since calculated nucleation and growth times are not sen-
sitive to the value of the critical nucleus size, we use nnuc = 8
in all cases.

We note that calculated critical nucleus sizes are only rough
estimates for any set of parameters, since the identities of crit-
ical nuclei depend on parameters in addition to the number
of subunits, such as the number of subunit-subunit bonds, the
number of subunit-polymer bonds, and partial capsid config-
urational entropy – i.e. the intermediate size alone is not suf-
ficient for a good reaction coordinate.
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VI. THE DEPENDENCE OF NUCLEATION TIMES ON
POLYMER-SUBUNIT INTERACTION STRENGTH

In this section we expand upon the relationships between
the polymer-subunit interaction strength εpc and capsid nu-
cleation times τnuc given in the main text, and present num-
bers for some of the parameters. We assume that the
system rapidly builds up pre-nucleation intermediates with
Boltzmann-weighted concentrations and that nucleation pre-
dominantly occurs via the association of individual subunits;
both assumptions are good approximations for all conditions
in these simulations that yield high packaging efficiencies.
With these assumptions, the nucleation rate can be obtained
from the concentration of intermediates with the size of one
subunit smaller than the critical nucleus size and the rate for
one additional subunit to bind. In general, the ensemble of
critical nuclei could be defined by number of subunits, num-
ber of subunits-subunit bonds, number of subunit-polymer
bonds, and the partial capsid configurational entropy (see e.g.
Refs. [7, 8]). The analysis is simplified if we neglect partial
capsid configurational entropy, and assume that the distribu-
tion of partial capsid intermediates with a given number of
subunits is sharply peaked around those with the most subunit-
subunit bonds and subunit-polymer bonds. Under these as-
sumptions, the concentrations of partial capsid intermediates
can be written as a function of only the number of subunits n,
and the nucleation rate can be expressed as:

τ−1
nuc ' kac0cnnuc−1 (3)

with c0 the concentration of free subunits, cn the concentra-
tion of partial capsid intermediates with n subunits adsorbed
on the polymer, and ka the subunit association rate constant.

The concentration of partial capsids adsorbed on the poly-
mer is given by

cn = c0Np exp [− (Gn + αngpc) /kBT ] . (4)

In this expression Gn is the free energy of a capsid inter-
mediate with n subunits, which depends on the number of
capsid subunit-subunit bonds, the subunit-subunit interaction
strength εb, and the subunit binding entropy penalty, which is
given by the fraction of subunit orientations available to bound
subunits and thus depends on δ. Similarly, gpc = εpc − Tspc
is the capsid subunit-polymer segment binding free energy
with spc the binding entropy penalty. We calculated spc/kB =
−2.56 by measuring the fraction of subunits bound to polymer
segments as a function of c0 with no subunit-subunit interac-
tions (εb = 0). The factor Np acknowledges that the num-
ber of adsorbed intermediates is proportional to the polymer
length Np for a fixed polymer concentration. The parameter α
is the number of polymer-subunit interactions per capsid sub-
unit in an adsorbed partial capsid intermediate. By averaging
over the ensemble of critical nuclei described in the last sec-
tion, we obtained α = 0.81. Eqs. 3 and 4 imply that cap-
sid nucleation rates should increase exponentially with εpc.
Consistent with this analysis, nucleation rates measured at a
range of polymer lengths show a log-linear relationship (see
Fig. 6b in the main text) with a slope ≈ 4.6, independent

(a) (b)

(d)(c)

FIG. 11: Conformations of encapsidated polymers. Four views are
shown of a polymers encapsidated inside a capsid with a preferred
size of 386 subunits. (a) The lattice layer at the inner capsid surface
is shown for a configuration with εpp = 0, εpc = 5.75, and Np =
220. (b) The lattice layer through the middle of the capsid is shown
for the same parameters as (a). (c),(d) The lattice layer through the
middle of the capsid is shown for polymer-polymer attractions (εpp =
0.075kBT and εpc = 5.25kBT ) with (c) Np = 320 and (d) Np =
410.

of polymer length. Following Eq. 4 this observation gives
α(nnuc − 1) ≈ 4.6 or a critical nucleus size of nnuc ≈ 6.72.
This number is slightly smaller than the critical nucleus size
nnuc = 8 obtained from Fig. S10. This discrepancy may result
from the assumption that the there is one value of nnuc and α
for the ensemble of critical nuclei; in fact, larger critical nuclei
have smaller values of α.

VII. POLYMER CONFORMATIONS INSIDE THE CAPSID

Conformations of an encapsidated polymer are shown in
Fig. S11.

VIII. AN EXTENSION TO THE CAPSID MODEL FOR
LOW PREFERRED CURVATURES

The model for capsomer-capsomer binding presented in the
main text is sufficient while δ < 2π/ncirc. For δ ≥ 2π/ncirc,
subunit-subunit bonds form if the conditions described in the
main text are satisfied OR an alternative set of conditions (see
Fig. S12). Although δ ≥ 2π/ncirc is never considered in this
work, we present the alternative set of conditions for com-
pleteness:

|θ + 2π/ncirc| ≤ δ (5)

rj − ri = (arg max
n̂

[n̂ · (−d̂b)]) (6)



4

FIG. 12: The geometry of interactions is shown for three model cap-
sid subunits, i, j, and k, where j interacts via the conditions in the
main text and k interacts via the alternative conditions. In this illus-
tration, the orientation vectors Ω̂i, Ω̂j , and Ω̂k are in the plane of
the figure and thus the rotation axis Ω̂a, used to determine d̂b from
Ω̂i, is perpendicular to that plane. The orientation of the bond vec-
tor d̂b is then determined by the angle θ between the two orientation
vectors as described in the main text. (Note that here Ω̂j and Ω̂k are
equal and thus have the same value for θ.) A favorable interaction be-
tween i and j will exist if θ satisfies Eq. 1 and a favorable interaction
between i and k will exist if θ satisfies Eq. 5.

FIG. 13: Definition of capsid subunit exclusion zones. Subunit i
could bind to either subunit j or subunit k, but the exclusion zones
of subunit j (indicated in red) make it impossible for j and k to be
present simultaneously.

IX. CAPSID SUBUNIT EXCLUDED VOLUME

The ‘exclusion zones’ discussed in the main text are illus-
trated in Fig. S13.
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