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Introduction 

The following supplementary material consists of three sections; first, a careful 

description of both derivation and meaning of Eq. 2 from the article main text. Second, a 

description of the experimental approaches used in this study, and third, a critical 

statistical analysis and justification of the methods used in the study. 

 

Tables of notation 

 Table 1 – Notation for main text 
Symbol used description Range of values 

s 
Volume (expressed in fl) 

500 fl to 3000 fl 

(see Fig. 1A) 

 The size of an individual cell, i, at a single time 

.  

500 fl to 3000 fl 

(see Fig. 1A) 

  The average cell size of the synchronized 

population at time n 

500 fl to 3000 fl 

(see Fig. 3A) 

 The linear growth constant of a single cell, i, at 

time point n. 

10 to 200 fl/hour 

(see Fig. 2A) 

 The total number of cells in the population at time 

 

 

 
The probability distribution of  values at time n 

0 to 1 (hour/fl) 

 The average value of the linear growth constant 

within the synchronized population at time n, i.e.  

 

  

or  

   

10 to 200 fl/hour 

(see Fig. 2A) 

 

 The average value of the exponential growth 

constant within the synchronized population at 

time n. 

0.01 to 0.1 hour -1  

(see Fig. 3E) 
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 The linear cumulative growth constant for cell i. 

Note that in the main text this variable is described 

as the difference between a cells’ size at time 

 to its’ size at birth, i.e. . These 

two descriptions are interchangeable because  

 and  thus  

 

 

 

The linear cumulative growth constant. 

 

And since  

 

10 to 1000 fl/hour 

 

 
The probability distribution of cumulative growth 

constants, c. 

0 to 1 (hour/fl) 

 
Growth rate (in fl/hour) 

10 to 200 fl/hour 

(see Fig. 2A) 

 Cell age. For an ideally synchronized population 

  time. For asynchronous populations different 

cells correspond to different values of  at any 

single time point. 

0 to 12 hours 

α The frequency of cell divisions in the 

asynchronous population. 

0.053 hour -1 

 A random variable describing the size difference 

between sister cells corresponding to a random 

mitosis event. 

-50 fl to 50 fl (see 

Fig. 1E) 

 The size probability distribution of the 

asynchronous steady state population. 

0 to 1 fl-1 (see Fig. 

1A) 

 The cumulative size probability distribution of the 

asynchronous steady state population. 

0 to 1 (unitless) 

 The cumulative size probability distribution of the 

mitotic subpopulation. 

0 to 1 (unitless) 

 The cumulative size probability distribution of the 

newborn subpopulation 

0 to 1 (unitless) 

 The size probability distribution of the 

synchronized population at time t. 

0 to 1 fl-1 
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 The probability distribution of size differences 

between daughter cells exiting mitosis. Note that 

differences can be arbitrarily negative or positive, 

depending on the “directionality” of the 

subtraction. This distribution is thus, by definition, 

symmetric around . 

0 to 1 fl-1 (see Fig. 

1E) 

 The probability distribution function for cell 

division as a function of cell age, , and size, . 

0 to 1 (unitless) 

 

Table 2 –Additional notation for the supplementary online material:  

Symbol used description Range of values 

 

The probability distribution of exponential growth 

constants, , in the synchronized population at 

time n. 

0 to 1 (unitless) 

 The exponential growth constant of a single cell, i, 

at time point n. 

0.01 to 0.1 hour-1  

 
The probability of having cells with size  and 

linear growth constant  at time n.  

0 to 1 (unitless) 

 
The probability of having cells with size  and an 

exponential growth constant k at time n. 

0 to 1 (unitless) 

 

An approximation for the probability distribution 

of the synchronized population at time t obtained 

by use of Eq. 2. When  is equal to the measured 

size distribution, , from time t, it means that we 

have approximated the correct functional form of 

 (see definition below). 

0 to 1 (units, fl-1) 

 

The exponential cumulative growth constant. 

 

0.001 to 1 hour -1 

 A function mapping the size of a cell at time t1 to 

its size at time t2. Note that no relationship exists 

between times t1 and t2 in the sense that t1 may be 

either greater or smaller than t2. 
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A note on notation and mathematical terminology 

In the text below we have made effort to appeal to a wide audience from a range of 

disciplines. To achieve this we have made compromises, being highly formal and over-

simplifying in some sections and yet highly non-formal and intuitive explanations in 

other sections. Additionally we provide a Mathematical Appendix section to explain 

methods that are used in this study but are not very frequently encountered in biological 

research. Examples of the latter include a brief explanation on how to understand the 

method of convolution (in the context of our work) and the method of kernel density 

estimation. Apart from the methodology, one consequence of the multidisciplinary nature 

of this study is that it requires a use of language that borrows technical jargon from both 

statistical mathematics and cell biology. Unfortunately, words may sometimes mean 

different things in these different disciplines. The most crucial example in our case is the 

term ‘distribution function’ which most audiences would understand as the probability 

distribution of some variable. Yet, in probability theory ‘distribution function’ is typically 

understood as the ‘cumulative probability function’ (i.e., the probability that 

a variable takes on a value less than or equal to some value). To avoid such confusions 

we clarify below some of the potentially more confusing technical formalities: 

Probability distributions (cumulative and non-cumulative) 

We will use the term ‘pobability distribution’ to refer to the ‘probability distribution 

function’ or density function. Care should be taken not to confuse this with the term 

‘distribution function’ which is usually (but not in our text) used to describe the 

cumulative probabilities. When referring to the cumulative probability function we will 

specifically use the term ‘cumulative distribution’. Further, when describing probability 

distributions we will distinguish between cumulative to non-cumulative frequencies by 

use of small caps vs. capital letters. Thus, F(x) would describe the cumulative distribution 

of x (i.e. the chance of getting a value less than or equal to x) while f(x) would describe 

the non-cumulative probability distribution (i.e. the chance of getting exactly x). 

Parentheses – triangular, curved and curled. 

We employ the conventional use of parentheses nomenclature. Specifically, we use 

curved parentheses, i.e. (x1, x2), denote intervals or ordered lists. For example (t1,t2) 
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should be interpreted as the time interval between t1 and t2. In contrast, curled 

parentheses, {x1,x2, x3}, would correspond to a set of objects in cases where the order of 

objects does not matter. Examples in our case would be a set of cells, {Cell1, Cell2, Cell3} 

or a set of cell sizes {s1, s2, s3}. In these latter cases the fact that s3 comes after s1 is 

arbitrary. Last, we use triangular parentheses, i.e. , to denote the average. For example, 

 represents the average cell size in the population.  

Random variables and the distinction between capital ‘S’ to small case ‘s’ in 

representing cell size.  

As customary in texts of probability theory, we will use capital vs. small script letters to 

distinguish random variables from regular variables. In our case, this applies to use of the 

symbol ‘s’ to denote cell volume while ‘S’ is a random variable describing the volume of 

a particular cell drawn at random from an underlying distribution (see ‘Cell size as a 

random variable’ in the ‘Mathematical Appendix’). Note that the distinction between ‘s’ 

and ‘S’ may not be necessary for a clear intuitive understanding of the manuscript, yet we 

felt that it was necessary for the formal equations. For example, the notation  is 

the probability that a randomly selected cell from the population would have a size s. For a more 

formal explanation see Appendix on ‘Random Variables’.   

 

Explanation of the Collins-Richmond Equation 

 

The Collins-Richmond equation (Eq. S1) is a conservation of mass equation that states 

that the number of cells that grow beyond any particular size threshold (e.g. s0 in Fig S1) 

must be balanced by the number of new cells generated by cell divisions. 
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Figure S1: The Collins-Richmond conservation law. The figure depicts the distribution of cell size in an 

asynchronous steady-state population. To illustrate the Collins-Richmond calculation, consider the 

proportion of cells that are smaller than or equal to a given size value, s (gray region under the curve). At 

steady-state the flux of newborn cells born with a size smaller then s is balanced by the rate at which cells 

grow past the size threshold (s). Some cells in the gray zone (size smaller s) may also divide and produce 

newborns with smaller size and this is taken into account in the calculation. Setting the flux of growth equal 

to the flux of division and integrating over the whole distribution allows the calculation of growth rate as a 

function of size. 

 

The Equation can be formulated in terms of fluxes of cells as  

 

 (S1) 

 

Where Nt is the total number of cells in the population at time t.  

 

 

 − is the total increase in cell number per unit time of the 

population of cells that are smaller than (or equal to) s. 

 − is the total number of newborn cells, per unit time, that 
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emerge from cell division with a size of that is smaller 

than or equal to s. The factor ‘2’ is added because there 

are 2 newborns per cell division. 

 − is the total number of cells, with a size of that is smaller 

than or equal to s, that divide (per unit time). Note that 

, as explained later in this 

document. 

 − is the rate at which the population of cells that are smaller 

than (or equal to) s increases due to cell divisions (blue 

arrow, Fig S1). 

 − is the total number of cells that cross (as a result of 

growth) the ‘s’ size barrier per unit time (orange arrow in 

Fig. S1). 

 

 

To obtain Eq. 1 (in the main text) from Eq. S1 one must cancel out the Nt terms in Eq. S1 

and rearrange to solve for the growth rate v. 

 

Deriving daughter cell size correlation  

We first collected microscope images of cells exiting mitosis where the furrow had 

progressed almost completely and two distinguishable round daughter cells were 

observed (96 examples). Fortunately the L1210 cells are nearly spherical, with an average 

axial ratio for a cross section of 1.015 ± 0.010 (N=192), allowing simple segmentation 

and volume approximation. To ensure that shape was not distorted, we imaged only 

mitotic cells that did not touch the plastic surface (floating cells). Segmentation was 

judged by using a GFP reporter localized to the membrane.  Fig. 1C shows a typical pair 

of segmented daughter cells. (See Experimental approaches and Statistics  pp, 19-22 for 

segmentation algorithm, statistics and justification of the spherical assumption).  By 

measuring relative differences between daughters, rather than absolute sizes, we 

effectively cancel out systematic errors that may arise due to various lens distortions.  



11 
 

Analysis of MOLT4 growth using the Collins-Richmond equation. 

We also applied the Collins-Richmond equation on MOLT4 human lymphoblasts to 

calculate their growth rate as function of size. We generated Fα and F0 for MOLT4; 

however we used the  obtained from the L1210 to calculate Fm (the shape of 

MOLT4 cells is more eccentric than L1210 and hence it was more difficult to measure 

their cross sectional area).  The justification for assuming the same daughter cell size 

correlation for L1210 and for MOLT4 is that the two cell lines are comparable in both the 

variability of newborn sizes (C.V. = 25%, L1210 and C.V. = 29%, MOLT4) and 

variability of growth rates (C.V.= 49% L1210 and C.V.= 47% for MOLT4). Furthermore 

the propagated error in the growth curve due to errors in the daughter cell ratios should be 

very small.  However, the errors in the MOLT4 plot are somewhat greater then the errors 

in the L1210 plot, which we believe results from a higher contamination of 

unsynchronized cells in the newborn population.  
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Figure S2: Growth rate as a function of cell size. Mean growth rate (fl/hour) is shown as a function of cell 

size (fl) for the MOLT4 cell line, using the Collins-Richmond plot. Curve was calculated from the Coulter 

Counter® measurements of asynchronous size distribution (106 cells), the size distribution of newborns 

(105 cells) and the daughter cell size correlation measured for L1210 using the Collins-Richmond method.  

 

Distortions of the Collins-Richmond plot caused by cell heterogeneity 
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While the Collins-Richmond method is very useful and accurately gains important 

information, interpreting this information may not be so simple. Mainly, this is due to the 

growth rate heterogeneity in the population.  For example, suppose that cells that grow 

more slowly during the cell cycle reach smaller volumes when they divide; lower growth 

rates would then be underrepresented among larger cells and could produce Collins-

Richmond plots like those we observe. In Fig S3 and S4 we demonstrate these problems. 
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Figure S3: There are major deviations of the observed Collins-Richmond distributions from both linear 

and exponential cell growth kinetics. The observed growth rates vs. cell size data from Figure 3A (black) is 

compared to ‘purely’ linear or exponential growth laws. For this comparison we plot growth curves of a 

population undergoing ideal exponential growth with, k=0.07 hr -1 (red) and linear growth (green). In these 

idealized growth curves we assumed that there is no intrinsic cell-to-cell variability in growth rates. 
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Figure S4: Distortions of the Collins-Richmond plot caused by cell heterogeneity.  (A) Schematic 

demonstration of the effect of the observed G1 growth rate repression on the Collins-Richmond plot using 

simulated data.  Here, a population of cells is considered to either be in G1 (blue) with a repressed growth 

rate (k=0.01) or in later stages of cell cycle (red), having non-repressed growth rates (k=0.07). Sizes of the 

circles indicate the proportion of cells in either of the two categories. As cells increase in size, the 

proportion of cells in G1 decreases, as indicated by the smaller sizes of the blue circles.  The mean 

population growth rate (black), which is the weighted average of the two, approaches the rate of the fast 

growing cells. (B). The effect of a cell-to-cell variation in growth rates on the Collins-Richmond plot.  In 

this simple model, cells in the population are considered to have one of two growth rates: a fast growth rate 

(red, k=0.08) and a slow growth rate (blue, k=0.04). As shown in Fig 5B, slow growing cells are expected 

to divide at smaller volumes. Therefore, as indicated by the circles, the proportion of slow growers will 

decrease with cell size. This decrease causes the mean population growth rate (black) to shift upwards in 

this plot of growth rate vs. cell size. Although for sake of clarity we considered in this example two discrete 

growth rate values, in reality a continuous range of growth rates probably exists in the population.  

 

 

Derivation and explanation of Eq. 2; time dependency of cell growth 

In the following text we explain how growth rates are calculated as a function of cell 

cycle progression (time). The section is provided to clarify the mathematical method 

employed by Eq. 2 in the main text. In general, our method follows two principles: first, 

within sufficiently short time intervals growth can be estimated as linear or exponential, 

or by any other function regardless of the underlying complexity of the ‘real’ growth 

function. Second, cell-to-cell variability can be accounted for by integrating over intrinsic 

growth rates in the population, thus obtaining the mean growth rate at any time point. 

Despite the apparent redundancy, we will derive formulas and address both the 

exponential and linear estimates as they rely on sharply contrasting simplifications and 

are, thus, complementary rather than redundant approaches. In fact, the observation that 

both the linear and the exponential estimates result in the same growth law demonstrates 

the power of the method and its’ relative insensitivity to the underlying simplifications, 

and the validity of the results. 
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The segmental estimates 

As noted above, within sufficiently short time intervals cell growth can be estimated by 

linear, , or exponential,  functions, where  and  are the 

linear or exponential growth constants respectively. For example, with the exponential 

estimate we say that the growth function between times  and  obeys 

 and between times  and  growth obeys . Note that 

we assume a different growth constant, , for every time interval (  for  and  

for ).  

 

 
 

The characteristic growth constants 

Thus, the challenge we face is to obtain the growth constants,  (or  

for the linear case) from our measured data, where  is the growth constant between 

times  and . To obtain these values we relied on size distributions sampled from the 

synchronized population of L1210 cells at different times, , after birth. Sampling 

times (times at which distributions were measured), were separated by 1 hour intervals 

( ). In other words, our data consisted of the probability 

distribution functions, , where  is the probability distribution of cell size  

hours after birth. Throughout this text we well use  to describe time  where  

is a one hour interval.  will be used to describe the time interval  corresponding to  
(tn, tn+1). One question that may be asked at this juncture is whether the time interval of 

 is a sufficiently short to model growth with the linear or exponential 

estimates. In principle, the size of the interval that would be sufficient for this purpose 

Fig S5: Size distributions were sampled from the 
synchronized population at times 1, 2, 3, 4 hours 
after birth. Between each two time points we 
obtained the growth constant kj that best estimates 
growth rates in that interval.  
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depends mostly on the curvature of the growth function we are trying to obtain. A large 

curvature would require shorter time intervals. Results in Fig. 4 in the main text suggest 

that for our case  is sufficiently small.  

 

Cell to cell variation - the characteristic growth constants as random variables 

While the linear and exponential estimates given above may describe the kinetics of a 

single cell, different cells in a population are expected to have different growth rates, i.e. 

different values of  or . To account for this cell to cell variability we consider a 

distribution of values for both  and . For example, consider the size distribution of cells 

at birth, , to correspond to the measured set of sizes , where  is the size of a single 

cell  at birth (time ). We will use the notation  to denote the growth constant of 

cell  at time interval . Using the exponential estimates, our goal is to seek the set of 

values  such that   will distribute according to the measured probability 

distribution function . Note that we can write  instead of  since 

. Following the same framework, using the linear growth estimates we seek 

the set of values  such that  is best described by the measured .  

 

Following the above description it can be said that for any time interval, , there exists a 

distribution of growth constants described by the probability distribution functions  

for the linear case, or  for the exponential case. Further, for any time interval, , we 

have a mean growth constant  or     as 

well as the variation of growth constant values. For simplicity in notation we will use the 

 to refer to  and  to refer to . Thus  (for the exponential case), or  (for 

the linear case), is the average growth constant in the population at time n. We will use 

 and  to describe the probability distribution of k and  values in time interval 

n. 
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The assumptions of size independent growth constants and the difference between the 

linear and exponential estimates 

Our model relies on an underlying assumption that growth constants, whether  

(exponential) or  (linear), or c (for any general growth constant which is not limited by a 

specific function) are independent of a cells’ size at birth.  

 

Formally, this assumption could be written as: 

 

 (assumption for the linear estimate) (S2) 

 

      (assumption for the exponential estimate) (S3) 

 

where  is the probability for cells to have size  and growth constant  at time n 

where  using the exponential estimates and  for the linear estimate. 

 

Yet, this assumption is controlled for by the fact that our results yield a single conclusion 

regardless of whether the exponential or linear simplification is applied (see below).  

 

While both the exponential and linear estimates may seem equally justified for the 

estimating growth kinetics in short time intervals, their implementation involves 

important and contradictory assumptions. Specifically, in both cases we apply the 

simplifying assumption that, in the newborn population, growth constants are not 

dependent on cell size. In other words, our simplification is that the size of a cell at birth 

does not correlate with its’ growth constant. Note, however, that this assumption means 

different things in the linear and exponential models. In the linear model, described by 

, the growth constants, β, are exactly equal to the growth rates, , as 

inferred from . So, using the linear estimates, our simplification means that 

growth rates are independent of birth (post-division) size. By contrast, in the exponential 

case,  i.e. , the growth constant, k, does not equal growth rate but is rather 
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obeys the relationship, . Thus, in the exponential case the growth rates 

will be dependent on cell size (growth rate = cell size × growth constant) even if the 

growth constants are not. 

 

The consequence of these assumptions for ‘size independent growth constants’ is that, 

only for newborns, we are allowed to randomly associate each cell with an arbitrary 

growth constant sampled from the distributions  and , regardless of its’ size.  

 

It is important to stress that this simplification of ‘size independent growth constants’ was 

by no means applied to cells at later time points; this would clearly be an invalid 

assumption and, is not required by our method. In fact, in later times a there is a clear 

dependency between a cells’ size and the value of its’ growth constant, as cells with 

larger growth constants will increase their size more rapidly and, consequently, obtain 

larger sizes. So, at a later time points in the synchronized population, we expect the larger 

cells to be the ones that grew faster and hence those that have larger growth constants.  

Relating interval growth constants to cumulative growth constants. 

Intuitively, it may be expected that the mean growth constant  may be obtained from 

comparison of size distributions  and . Yet implementing this is non trivial since, 

as explained in the above section, we do not know how growth constants at these times 

are associated with cell size. To circumvent this problem we calculate cumulative growth 

constants  (or  with the linear estimate) by comparing distributions,  (for any given 

), exclusively with the probability distribution of the newborn population, , where 

growth constants are assumed to be size-independent. We then obtain the growth 

constants,  and , for the separate time intervals from their cumulative values,  or  

(Fig S6). To understand this calculation, consider a single cell with size  at birth 

( ). Using the exponential estimate, we search for a multiplier, , such that 

. At time  the size of this cell would be: 
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And at time , 

  

 

Where  is the cumulative growth constant defined by:  

 

      

 

Leading to:  

 

  (S4) 

 

In statistical terms we can say that if  are the measured cell sizes at birth and are 

described by the probability distribution, , then we seek the set of multipliers  

such that the distribution of  is best described by . Now, assume we can 

calculate the values of  (or  for the linear model) from the observed probability 

distributions  and  and  (or ) from the observed  and  (details of how this 

calculation is performed are given later). Having these values we can then calculate the 

growth constant, , for the time interval  by  (see Eq. S3). While 

the above relationship was derived using the exponential model, it is straight forward to 

prove its correctness for the linear model as well.  

  

 



19 
 

 

 

A general derivation of the time dependent growth rates for all possible functions  

Eq. 2A in the main text and the explanations that precede it describe how mean growth 

rates are independently calculated for each of the time intervals. As mentioned in the 

main text, Eq. 2A has been derived for the case of the linear segmental estimates and 

does not apply to other possible models such as the exponential estimates which we have 

also used. In what follows we will derive a completely general formula (Eq. S8) for 

obtaining the time dependent growth rates. We then present the linear (S9) and 

exponential (S10) formulas as specific cases of Eq S8. Note that Eq. S9 is identical to Eq. 

2A from the main text, but was derived more generally. As a reminder, Eq. 2B from the 

main text is described in this SOM by Eq. S3. As is often the case, the very general 

equations that follow require a higher abstraction and, consequently, require more effort 

on the part of the reader.  

To obtain generality and simplify writing we will use the notation  to describe 

the cumulative growth constant, regardless of whether the linear, exponential or any other 

Figure S6: Relationship between growth constants, , to the cumulative growth constants, . 
Relationship is shown in trajectories of single cells. A. Cell size as a function of time for a 
population of three cells. Cell-to-cell variation exists in initial cell size and growth constants. B. 
Comparison of cumulative growth constant, , with the respective interval growth constants. 
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estimates are used. We will use , or , to describe the distribution of  

values. 

To begin, we define a function,  mapping the size of cells with age  

and  to their size at birth ( ). In other words,   where  is the size 

of a cell that at time  has a cumulative growth constant, . Specific forms of  

are: 

  

 (linear estimate)                 (S5) 

 

 (exponential estimate)     (S6) 

 

To understand the implementation of  consider all cells in the population that are 

characterized by a single cumulative growth constant, . For this subpopulation of 

cells we can obtain the probability distribution function of size at time  from 

their size probability distribution at birth by using standard transformation of variables: 

 

       (S7) 

 

Where  is the size distribution of cells with cumulative growth constant  at age 

. 

 

Relying on the assumptions, described earlier, that growth constants are independent of 

size at birth we have: 

 

          (S8) 

 

Introducing  Eq. S7 into Eq. S6 we  
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And integrating over all values of  we get: 

 

     

 (S9) 

 

Eq. S8, given explicitly for both the exponential and linear estimates is: 

 

 
 (linear estimate)   (S10) 

 

 (exponential estimate)   (S11) 

 

We solve Eq. S8 by assuming a Gaussian form of , with a mean μ and a standard 

deviation σ.   

 

 

 

 

Introducing  to Eq. S8 results in 

 

     (S12) 
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Note that  represents an estimate for the real probability distribution function  

assuming that we have the correct distribution function for the cumulative cell growth 

constants, . Our goal is, then, to find the combination of  and  that would 

minimize the difference between our estimate, , and the true measured probability 

distribution, . To quantify this difference we use the function 

. Since  is measured data and  is dependent on 

measured data and on the selected values of  and , L is a function of only  and . i.e. 

. Thus, by performing standard computer search 

algorithms we obtain a unique pair of values,  and , that minimizes L for any given 

time interval. By performing this calculation on all time points we obtain the mean and 

variance for any .  

 

Validity and consequence of the Gaussian approximation. 

Note that in the case that G is linear or exponential (as is the case in Eq. S10, Eq. S11 and 

Eq. 2 from the main text) the Gaussian approximation described above is not required 

and  can be solved for by any method of numerical deconvlution, e.g. the Weiner 

deconvolution. In fact, to control for the validity of the use of the Gaussian 

approximation in our text we have additionally solved for  with the Weiner 

deconvolution and obtained essentially identical results.  

 

An additional test for the validity of the Gaussian approximation is to ask whether the 

values obtained for L are satisfactory. In other words, whether  is a good estimate 

for . Fig S7 shows  (blue bars) along with its estimate  (red line). It is 

clear from the figure that obtained estimate is very close to the measured data. More 

generally, Fig S7 shows the fits obtained from the Gaussian estimate for all time points 

from  to . At time  and above cells in the population undergo division 

generating bimodal size distribution of cells before and after division, and our growth 

calculation no longer describes the measured size distributions. 
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Another important factor regarding the justification of the Gaussian assumption is 

the following question: if cumulative growth constants do not normally distribute, how 

will this affect interpretation of our results. Specifically, consider the possibility that the 

true distribution of  is not  but rather some alternate form . In such case, the 

relevant question is how would the obtained values  differ from the values ? Since our 

biological inferences are based only on the mean values we may expect that different 

distribution functions may lead to similar means, when fitted to the same data. We thus 

conclude that although the Gaussian form of  is an assumption, results obtained from 

this method are valuable for inference regardless of whether this assumption is correct.   

 

 
Figure S7:  (blue bars) along with its estimate  (red line) for t = 5 to 8. 
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Experimental approaches  

Tissue culture and cell synchronization 

Mouse L1210 and human MOLT4 lymphoblastoid cells were a gift from Charles 

Helmstetter. Cells were grown in Leibovitz’s L-15 CO2 independent media (Invitrogen) 

supplemented with 10% FBS (Invitrogen), 1g/L D-(+)-glucose solution (Sigma-Aldrich) 

and 1% 100X penicillin-streptomycin solution (Gemini).  

Newborn cells were generated from a continuously dividing population by mechanical 

synchronization. Instrument design and preparation, and experimental techniques 

described in great details in LeBleu et al 2006 (see main text, reference 22). In brief, cell 

populations synchronized at cell division were generated by growing normally on a 

coated nitrocellulose membrane and constantly washed in a closed system (for coating we 

used concanavalin A [Sigma-Aldrich] for L1210 and Poly-D-Lysine [Sigma-Aldrich] for 

MOLT4). As cells divide, one of two daughters detaches from the membrane, and the 

population of newborns is centralized by rotation and washed out into a cultured flask. 

Throughout this procedure cells are maintained at 37°C. The size distribution of both 

newborn and asynchronous populations was measured by Coulter Counter® (Beckman-

Coulter). The quality of synchronization was validated by DNA analysis (propidium 

iodide) using FACSCalibur® flow cytometer (BD Biosciences). 

Cell labeling, image analysis and segmentation 

 The PH domain of PLC-delta1 tagged with GFP was cloned into the retroviral 

vector pLNCX2. The viral supernatant was kindly given by Guillaume Charras (UCL, 

London, UK) and was used for infection of L1210 cells. Single cells expressing GFP 

were sorted by FACSAria® (BD Biosciences) and maintained in conditioned medium 

containing 0.4 mg/ml G 418 sulfate (Calbiochem) for two weeks and later in regular 

culture medium under the same antibiotic selection. For experiments involving live cell 

imaging we picked a colony of cells with clear membrane labeling and cell cycle and cell 

size profiles indistinguishable from that of unlabeled cells. During image acquisition, 

cells were maintained in 32mm uncoated MatTek® dishes at 37°C. We looked for 

ellipsoidal or dumbbell-shaped cells (in anaphase or telophase) and generated z-stack 

images (0.5 μm steps, 100X magnification) every 2-3 minutes until the furrow had 
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progressed almost completely and two distinguishable round daughter cells were 

observed. We analyzed only cells that remain floating throughout the time-lapse imaging 

to minimize distortion due to contact with the surface. Images were taken in the Nikon 

Imaging Centre using Nikon TE2000E Inverted Fluorescence Microscope. 

 

Statistics 

Segmentation of round cells:  

We used a multistage process to determine cell volumes.  From grayscale thresholding 

(MATLAB®) we obtained rough approximations for the circle enclosing the cell image 

and for the circle center (see yellow dot in Fig. S8). We then extended rays (see white 

lines) of fixed width (5 pixels) from the approximate center of the cell and collected the 

average image intensity within the lines. These lines corresponded to profiles that had a 

maximum at the cell membrane. By repeating this step for different angles we obtained 

N=30 points along the cell membrane (see green dots) and used least squares to fit a 

circle to these N circumference points (see red circle). This method resulted with a mean 

radius for every cell image and for every focal plane. Cell volume was estimated based 

on largest mean radius.   We defined ‘sphericality’ as the variance in the length of the 

rays emanating from the cell center.  

 

 
 

Note that all errors or inaccuracies that may be associated with this microscopy-based 

method are contained in a single number, namely the value of σ2. Since the contribution 

of independent variables to a variance is additive, σ2 inevitably contains a component of 

Figure S8: Example of the L1210 segmentation 
algorithm.  
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true daughter cell variation together with a component of experimental error and, thus, 

represents an upper bound to the true daughter cell asymmetry. Nevertheless, due to the 

small asymmetry in division, errors in this measurement make an insignificant statistical 

contribution to the calculated growth curve obtained from the Collins-Richmond equation 

(see Fig. 3). 

Spherical assumption: 

As described in the main article text, imaged cells were maintained “floating”, thus their 

geometry was not perturbed by the surface of the plate within which they were imaged. 

To estimate the deviation from ‘sphericality’ we calculated the variance of the distances 

between the identified circle center to the N circumference points. The square root of this 

variance (the standard deviation) was found to be in the order of magnitude of 1% of the 

circle radius, indicating the high quality of the segmentation algorithm and the 

justification for the spherical assumption.  

 

Independence between newborn cell size, S0, and the differences, Δ, between newborns 

cells after division (justification for calculation of mitotic size distribution) 

 

To calculate the size distribution of mitotic cells we used the convolution equation, 

, where F0 (s) is the cumulative distribution of newborn sizes and δ is 

the distribution of size differences between daughter cells emerging from common 

mitosis (daughter cells). To understand this intuitively, what we do is randomly associate 

each newborn with a given Δ. In other words, we randomly sample a newborn size, S0, 

from the measured distribution f0 and add it to a size difference, Δ, randomly sampled 

from the measured distribution δ to obtain . Affectively, iterating this 

random sampling and pairing procedure multiple times would result in a set of Sm values 

that distribute according to . Note, however, that for this procedure to 

be valid there must be no correlation between S0 and Δ otherwise the random pairing is 

not possible. Fig S9 shows the correlation between S0 and  Δ, for the dataset resulting 
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from image segmentation. The correlation is weak (0.13), justifying use of the 

convolution theorem.  

 

 

Error analysis of the Collin-Richmond method. 

 

Calculation of growth rates based on the Collins-Richmond method was performed based 

on the Eq:  

 

 
    

 (S13) 

 

Where  is the non-cumulative probability distribution in the asynchronous population; 

 is the cumulative probability distribution in the asynchronous population; 
 
is the 

cumulative probability distribution of the newborn population;  is the probability 

distribution of the size differences between daughter cells after division and  is the 

frequency of cell divisions in the asynchronous population  

 

Size measurement data for the distributions of ,  and  were obtained by Coulter 

Counter®. To approximate the probability distribution function describing size 

measurements we relied on kernel estimation with a Gaussian kernel, . Briefly, kernel 

Figure S9: Independence between newborn size and differences between daughter cells. Sizes 
and size differences are shown in fl. Correlation (Pearson) between the two variables (S0, Δ) is 
0.13 (p value 0.08)  
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density estimation, or the Parzen window method, is a method which, like histograms, 

provides a means to estimate an underlying probability distribution from measured data 

samples (see Appendix).   

 

Calculation of error in the probability estimation 

To estimate errors on the calculated distribution estimates ( , , ,
 

) we used  

where  is the obtained probability distribution estimate and  is the error or confidence 

interval:  

        (S14) 

Eq. S14 was taken from (1) page 30. In Eq. S14, ε is a number corresponding to the width 

of the kernel and is given by .  is the sample size and  is the kernel 

width as described above.   

 

Note that in  ranges from 0.1 to 0.2 depending on sample size, h ranges from 10 to 20 

while total sample size, N, ranges from  for the newborn population to 106 for the 

asynchronous population. Thus, errors in frequency estimation are in the order of 

magnitude of 10-5 to 10-6. Example of these confidence intervals for the newborn size 

distributions is shown in Fig. S10. Note that we have plotted 10 or 100 width confidence 

intervals, emphasizing the high confidence of the probability distribution function 

estimates.  
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Effect of errors in probability estimation on calculated growth values 

 

We used the “propagation of errors” method to calculate how measurement errors in the 

individual measurements affect the growth rate values given by Eq. 1. Specifically, the 

total error in  is given by:  

 

  (S15) 

 

Where  is the error associated with . Note that  in this context does NOT 

represent differences between daughter cells, as in the main text. The terms in Eq. 3 can 

be simply calculated from the Collins-Richmond equation (Eq. 1). Here we simplify by 

assuming that  and  are independent measurements (since this assumption can only 

increase errors, its use in this context is justified). We perform these calculations on the 

three size measurements obtained from the Coulter Counter® ( , , ).  

 

Cell size (fl) 

fn F0 

Cell size (fl) 

Figure S10. Confidence interval bounds for the cumulative (B) and non-cumulative (A) size 
distribution of L1210 newborns. Importantly, to emphasize the errors we used 10 confidence interval 
widths for the non-cumulative density and 100 confidence interval widths for the cumulative density. 
Thus, the confidence intervals displayed represent exaggerations for the purpose of illustration. For 

cumulative distributions, error was approximated as binomial and estimated by .  

 

A B
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Total error in growth rate calculation. 

As seen from Eq 1,  multiplies every term in the equation. Therefore, it is evident that 

errors in the value of  will not affect the shape of the growth curve we obtained, but 

only scale it to higher or lower values. Thus to a good approximation errors in growth 

rate calculation are given by: 

 

 
     

 (S16) 

 

Where maximal value of 
 
is 1.5×10-3, the maximal value of  is 10-3, the maximal 

value of  is 3×10-6 and = 0.05 (for L1210). Thus Eq. 4 can be used to approximate 

the affective range error which comes to be: . The most obvious 

insight from this analysis is that, since  is in the range of 10 to 200 (fl/hour), the error in 

calculated growth rate is limited almost exclusively by the value of the probability 

distribution function in the asynchronous population. Specifically, to get an error in the 

range of ± 1 (fl/hour) we need to rely on probabilities as low as . From 

comparison with Fig 2 from the main text we see that these probabilities correspond to a 

cell size greater than 3000 fl, a size that is not considered in our study. Thus, we conclude 

that error in the growth rate calculation by use of Eq. 1 is limited to under 1 fl/hour, 

which is insignificant for our purposes. 

 

Mathematical Appendix 
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Kernel density (or probability distribution) estimation 

Kernel density estimation is a method that, based on a sample of measurements, estimates 

the underlying distribution. For example, imagine the volume of 1,000 cells from a given 

population. We want, based on these measurements, to estimate the distribution of cell 

size. Two options are a hand. One is to draw a histogram and the other option is the 

kernel method, also known as the ‘Parzen window method’. Intuitively, the basic 

principle behind the kernel density estimation method is to ‘draw a Gaussian’ around 

each data point and then sum up these Gaussians to build the estimate (1).  

 

Cell size as a random variable (small caps s vs. capital S) 

A random variable, represented in this text by capital letters, is a function that assigns a 

probability value (a real number) to every possible result of a random experiment ((2) pp. 155). 

For example,  is the probability that a randomly selected cell from the population would 

have a size s.   

 

What is a convolution and why it is used in the present study? 

Suppose  is the probability distribution of the random variable  and  is the 

probability distribution of Y. Now suppose we are interested in the probability 

distribution,  of . In the case that  and  are independent variables 

(there is no correlation between x and y) than the answer to our question is 

. The expression  is called the 

convolution of  with  and by convention is written with the symbol ‘*’ as 

 or in short, . In our study 

convolution is applied to calculate the mitotic size distribution from the distribution of 

differences between daughter cells and the distribution of newborns (note: 

). Deconvolution denotes the inversion of a convolution. In our case, 
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Eq. S8 and Eq. 2 in the main text describe the convolution . Since  and  

are known from measurement we seek to ‘deconvolute’  from  to obtain . Since 

there is no simple method for deconvolution, we assume a Gaussian  and minimize as 

described above. 

 

Calculation of the <6% difference in cell size of the linear vs. exponential growth models 

 

As described in the text, to experimentally distinguish exponential from linear growth 

requires a measurement resolution sufficient to detect size differences less than 6% of 

cell size. Intuitively, it may seem unreasonable that linear and exponential growth models 

differ by such a small extent. In what follows we calculate the maximal size difference 

predicted between the two models and show that it is 5.63%. Due to the nature of the 

question, we will use notation that is somewhat simplified from that which has been used 

throughout this supplement. We, therefore, add a small separate table of notation below. 

 
Figure S11 

 

Linear growth model:               

Exponential growth model:      

 - time 

 - length of cell cycle (time) 

 - size of cell at birth 

 - size of cell at division 

 

 

 

Linear Growth Exponential Growth 
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Imposing two-fold* 

 

 

We can thus write the growth equation in 

terms of  

 

 

 

Imposing two-fold* 

 

 

We can thus write the growth equation in 

terms of  

 

  

The volume difference between the exponential and linear models is: 

 

 

The maximum difference between exponential and linear models occurs at time  such 

that  

 

 

To find  we impose  

 

Thus,  

 

 

Now to calculate maximum percentage difference 

 

 

* The cell size range between birth and division is two fold 
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Thus the exponential and linear model are differentiated by (at max) 5.63% volume 

differences. 

 

 

References 

 

1. A. W. Bowman, A. Azzalini, Applied smoothing techniques for data analysis : the 

kernel approach with S-Plus illustrations (Clarendon Press, Oxford, 1997), pp. xi, 

193 p. 

2. H. Frank, S. C. Althoen, Statistics : concepts and applications (Cambridge 

University Press, Cambridge [England] ; New York, NY, USA, 1994), pp. xxvi, 

853 p. 

 

 

 


