
A Estimating model parameters

This section presents algorithms for estimating the model parameters Σ, m, Ψ, π and q.

A.1 Estimating Σ

If a dataset has replicates, the variances Σ are estimated using the replicate samples in that
dataset. If a dataset does not have replicate samples, then the probe variances cannot be estimated
from that dataset alone. In this scenario, we use information from other datasets to assist the
variance estimation. Details for estimating Σ are described below.

1. If dataset d has replicates and the replicate samples are paired (e.g., in Agilent arrays, IP and
control intensities are obtained from two channels Cy5 and Cy3 of the same hybridization),
then the probe variances σ2

id are estimated as follows. Let Xidjk be the normalized and log2
transformed probe intensity of probe i in the k-th replicate under the condition j (j = 1:
IP; j = 0: control) of dataset d. Let Yidk = Xid1k − Xid0k be the log2 IP/control ratio in
replicate k, Kd be the number of replicate samples of dataset d, I denote the total number
of probes, and Yid be the sample mean of probe i’s log2 ratios Yidk in dataset d. We first
compute

SSWid =
∑
k

(Yidk − Yid)2 (A.1)

The variances σ2
id are then estimated by
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Here S2
d is the sample average of S2

ids across all probes, and Bd is a shrinkage factor computed
using the method described in Ji and Wong (2005).

2. If dataset d has replicates (i.e., the dataset has either more than one IP sample, or more
than one control sample, or both) but the replicate samples are not paired (e.g., the typical
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Affymetrix data), then the probe variances σ2
id are estimated as follows. Let Kdj be the

number of replicate samples under the condition j of dataset d, and X̄idj. be the sample
mean of Xidjk under the condition j and dataset d. We first compute

SSWidj =
∑
k

(Xidjk − X̄idj.)2 (A.3)

The variances σ2
id are then estimated by
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Here S2
d is the sample average of S2

ids across all probes.

3. If IP and control samples are paired, dataset d has only one IP/control pair (i.e., Kd = 1),
but at least one of the other datasets used in the joint analysis contains replicate pairs, then
the probe variances σ2

id are estimated as follows.
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Here SSWid′ is computed using Formula A.1, and S2 is the sample average of S2
i s across all

probes.

4. If dataset d has only one IP and one control sample which are not paired (i.e., Kd0 = Kd1 =
1), but at least one of the other datasets used in the joint analysis contains replicates, then
the probe variances are estimated as follows.
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Here SSWid′j is computed using Formula A.3, and S2 is the sample average of S2
i s across

all probes.

5. If none of the datasets used in the joint analysis contains replicate samples, and if IP and
control samples are paired, then the following procedure is used to estimate the probe
variances. For probe i we first compute the the log2 IP/control fold change Yid for each
dataset d, then the sample variance of Yid across all datasets is computed. This variance is
denoted as S2

i . Let C be the 90-th percentile of all S2
i s (i.e., the 90-th percentile across all

probes). Define S̃2
i = min(S2

i , C). In other words, we truncate S2
i s at their 90-th percentile

and denote the truncated values as S̃2
i s. Let D be the number of datasets. The probe

variances σ2
id are then estimated as follows.
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The reasoning behind this algorithm is explained below. In genomic regions without IP
enrichment, the variance S2

i is an estimate (although not perfect) of the true probe variance
σ2
id. The background regions typically occupy more than 90% of the genome. In regions

with TF binding, S2
i can often overestimate σ2

id. This is because a TF can bind in some but
not all datasets, whereas σ2

id is supposed to characterize variability across replicate samples.
The overestimated probe variance can potentially reduce the sensitivity of peak detection.
To avoid losing too much sensitivity, we choose to put a bound on S2

i . Using the bounded
S̃2
i , the new shrinkage estimator provides relatively robust estimates of the probe variances.
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Our experience shows that this procedure works better than an alternative approach in
which σ2

id is set to zero when no replicate samples are available.

6. If none of the datasets used in the joint analysis contains replicate samples, and if IP and
control samples are not paired, then for each probe i we first compute the sample variance
of Xidjk in control samples (i.e., the variance of Xid01 across all d). Let S2

i0 denote this
variance. The probe variances σ2

id are then estimated by
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A.2 EM algorithm for estimating m and Ψ

Our estimation of Σ involves evaluation of closed-form formulas using all probes. Unlike Σ,
estimation of the other model parameters m, Ψ, π and q is based on iterative procedures. Directly
applying these procedures to all probes is time-consuming. In practice, JAMIE uses a two-pass
algorithm to keep the computation tractable. In the first pass, a simple and fast moving average
method described in Ji and Wong (2005) is used to analyze each dataset separately to roughly
locate peaks using a loose false discovery rate cutoff (default = 30%). If no peaks were found at
the loose FDR cutoff in the first pass, it indicates that the data are too noisy, and the dataset
will be excluded from the subsequent analysis (this did not happen in our real data tests). The
data in the peaks will be used to estimate parameters m, Ψ, π and q (see below for details). In
the second pass, the estimated parameters including Σ, m, Ψ, π and q are used in conjunction
with a sliding window to rescan the whole genome to detect peaks which will be reported as the
final results.

This section describes the algorithm used for estimating m and Ψ. After peaks are roughly
located in the first pass scan, they are extended 1000bp on both ends. Probes within the peaks
and extended regions are then collected. In addition, we randomly pick up the same number of
probes from other regions in the genome to represent background. These two types of probes are
mixed, and the following EM algorithm is applied to data from these selected probes.

Following the notations in the paper, Yid is the observed IP-control difference in dataset d,
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and µid is the true difference. Their probability distributions are parameterized by md and τ2
d .

The other parameters σ2
id and ε are assumed to be given for the purpose of estimating md and

τ2
d . We estimate md and τ2

d for each dataset separately, hence the dataset subscript d is dropped
in this section to simplify notations.

The data generating model of Y can be translated into the following model:

Yi|µi ∼ N(µi, σ2
i ) ≡ φyi

µi|Zi = 0 ∼ N(0, τ2) ≡ φ0i

µi|Zi = 1 ∼ N(m, τ2) ≡ φ1i

Pr(Zi = 1|Hi = 0) = ε

Pr(Zi = 1|Hi = 1) = 1− ε (A.9)

In the JAMIE model used to scan the genome, the true Zi states of probes are not independent
(e.g., probes in the same peak should all have high probability of Zi = 1). However, when we
estimate m and τ2, in order to simplify computation, we assume that Zis of different probes
are independent. In other words, probes on the array are viewed as a two-component mixture
where Zi = 0 and Zi = 1 are the two components, and each probe independently decides which
component it belongs to. This assumption is used only for the purpose of parameter estimation,
and it is not used for peak detection. Let I be the total number of probes and λ = Pr(Zi = 1).
Let Z be the collection of all Zi, and M be the collection of all µi. The simplification above leads
to the following joint density:

P (Y,M,Z|λ,m, τ2) =
I∏
i=1

{φyi [(1− λ)φ0i]1−Zi [λφ1i]Zi}

Treat Y as observed data, and treat M and Z as missing data. Let Θ = (λ,m, τ2). The
complete data log likelihood is

l(Θ) =
I∑
i=1

{logφyi + (1− Zi)[log(1− λ) + logφ0i] + Zi [logλ+ logφ1i]}

=
I∑
i=1

{
(1− Zi)

[
log(1− λ)− logτ2

2
− µ2

i

2τ2

]
+ Zi

[
logλ− logτ2

2
− (µi −m)2

2τ2

]}
+ c

(A.10)

Here c is a constant that does not contain the parameters to be estimated. Based on this log
likelihood, the following EM algorithm can be developed to estimate m and τ2. Let Θt be the
parameter estimates in step t.
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E-step: Compute E[Zi|Y,Θt], E[µ2
i |Y,Θt] and E[Ziµi|Y,Θt].

1. By integrating out µi from Equation A.9, one obtains

Yi|Zi = 0,Θ ∼ N(0, σ2
i + τ2) ≡ f0i

Yi|Zi = 1,Θ ∼ N(m,σ2
i + τ2) ≡ f1i

and E[Zi|Y,Θ] = P (Zi = 1|Y,Θ) = λf1i

λf1i+(1−λ)f0i
. Define zi,t ≡ E[Zi|Y,Θt].

2. The distributions of µi conditional on Y, Z and Θ are
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(
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Based on this,
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Similarly, one can get:
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Plug in these expected values to Equation A.10, we get the Q function

Q ≡ Q(Θ|Θt) = E[l(Θ)|Y,Θt]. (A.11)

M-step: Maximize the Q function with respect to Θ.

1. ∂Q
∂λ = 0 =⇒ λt+1 =

P
i zi,t

I .

2. ∂Q
∂m = 0 =⇒ mt+1 =

P
i E[Ziµi|Y,Θt]P

i zi,t

3. ∂Q
∂τ2 = 0 =⇒ τ2

t+1 =
P

i{E[µ2
i |Y,Θt]−2mt+1E[Ziµi|Y,Θt]+m2

t+1zi,t}
I

Upon convergence, the m and τ2 from the last iteration will be used as the parameter values
for JAMIE. The EM procedure converged well in real data and the estimates are reasonable.
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A.3 EM algorithm for estimating π and q

For estimating π and q, we assume that Σ, m and Ψ are known. Again we first apply the simple
moving average method to roughly locate peaks for each dataset separately, using a loose FDR
cutoff (default = 30%). The union of peaks detected in all datasets are obtained. Each peak is
truncated or extended to L bps. Resulting windows that are not overlapping are retained.

Let C be the indices of the probes that start the retained windows. Assume one can partition
the rest of the genome into non-overlapping windows of L bps, and let C̄ be the indices of the
probes that start these windows. In reality, for windows in C̄, Bi could either be 0 or 1. However,
in order to simplify the computation, here we assume that (1) Bi of all windows are generated
according to the probabilistic model described in METHODS of the main text; (2) for windows in
C̄, Bi and Aid are observed and are equal to 0; (3) for windows in C, Bi and Aid are unobserved
(i.e., missing data) and can be 0 or 1. This simplification assumes that PBRs cannot occur
in windows in C̄, and it assumes that C and C̄ are known before looking at the data. These
simplifying assumptions provide useful approximations that allow us to develop computationally
efficient algorithms to obtain rough estimates of π and q. The assumption that PBRs only occur
in C may cause π to be underestimated, which may lead to conservative false discovery rate
estimates. The assumptions made by the simplification are only used for estimating π and q.
They are not required by the peak detection, in which the estimated parameters are used to scan
the whole genome and all windows can have Bi = 1 with non-zero probability.

Now consider the joint probability of A, B and Y for all genomic windows. Based on Equation
6 in the paper, this probability can be written as:

∏
i

P (Yi,Ai, Bi|Λ,U) =
∏
i∈C̄

[
(1− π)

∏
d

p0id

]
∏
i∈C


[

(1− π)
∏
d

{(1−Aid)p0id}

]1−Bi
[
π
∏
d

[(1− qd)p0id]1−Aid [qdp1id]Aid

]Bi

 (A.12)

Ai’s and Bi’s are partially missing, since their values are assumed to be known for i ∈ C̄.

The complete data log-likelihood for parameters (π and q) is

l(π,q) =
∑
i∈C̄

log(1− π) +
∑
i∈C

(1−Bi)log(1− π)+

∑
i∈C

Bi

[
logπ +

∑
d

{(1−Aid)log(1− qd) +Aidlogqd}

]
+ c1 (A.13)

where c1 is a constant that does not involve π and q.
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Based on this, an EM algorithm is developed to estimate π and q. Let Ω = (π,q), and Ωt be
the parameter estimates at step t.

E-step: Compute theQ functionQ(Ω|Ωt) = E(l(Ω)|Y,Ωt) which involves calculating E[Bi|Y,Ωt]
and E[BiAid|Y,Ωt].

1. For i ∈ C̄, Bi = 0 and BiAid = 0.

2. For i ∈ C, E[Bi|Y,Ωt] = Pr(Yi|Bi=1,Ωt)πt

Pr(Yi|Bi=1,Ωt)πt+Pr(Yi|Bi=0,Ωt)(1−πt)
≡ bi,t.

3. For i ∈ C, E[BiAid|Y,Ωt] = qd,tp1idbi,t
qd,tp1id+(1−qd,t)p0id

≡ aid,t

Here,

Pr(Yi|Bi = 1,Ωt) =
∏
d

{qd,tp1id + (1− qd,t)p0id}

Pr(Yi|Bi = 0,Ωt) =
∏
d

p0id

Plug E[Bi|Y,Ωt] and E[BiAid|Y,Ωt] into Equation A.13, we obtain the Q function

Q(Ω|Ωt) =
∑
i∈C̄

log(1− π) +
∑
i∈C
{(1− bi,t)log(1− π) + bi,tlogπ}+

∑
i∈C

∑
d

{(bi,t − aid,t)log(1− qd) + aid,tlogqd}+ c2

M-step: Maximize the Q function with respect to π and q.

1. ∂Q
∂π = 0 =⇒ πt+1 =

P
i∈C bi,tP

i 1 . The denominator is the total number of windows in C and C̄,
which is approximately equal to the total length of the genome covered by the tiling array
divided by L, the length of PBR.

2. ∂Q
∂qd

= 0 =⇒ qd,t+1 =
P

i∈C aid,tP
i∈C bi,t

.

B Assessing model assumptions

JAMIE is based on a number of model assumptions. In sections B.1 - B.5, we examine these
assumptions in the context of real data analysis and discuss their implications and limitations.
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In section B.6, we test JAMIE using simulations in which various model assumptions are not
satisfied. Our results show that JAMIE is fairly robust to deviations from the model assumptions.
It outperforms the other algorithms even in data where many model assumptions are not satisfied.

The choice of model assumptions represents a tradeoff between the ability to accurately de-
scribe the data and the complexity of the model. One can develop more complex models to
faithfully reflect all data characteristics, but the model will be more difficult to implement and
apply in reality.

B.1 Normality

Normality is a widely used assumption in both gene expression and genome tiling array data
analysis. There are two normality assumptions in JAMIE. The first one is the normality of the
true log ratios µid which are assumed to follow a mixture of normal distributions, and the second
one is the normality of the observed log ratios Yid conditional on µid.

Using normal QQ plots, we first explored the empirical distributions of the estimated µid in
different datasets. For each dataset d, µid was estimated by µ̂id = Yid. Three representative
normal QQ plots are shown in the upper panel of Figure S4. According to this analysis, µ̂id was
approximately normal for most datasets (e.g., Gli1 limb and Sox2). Note that the heavier right
tails in the plots are expected, as they correspond to probes from regions with enrichment signals
(i.e., peaks). For a few datasets, µ̂id had heavier tails on both sides, suggesting that the normality
assumption was not ideal. For example, the empirical distribution of µ̂id in the E2F4 G0 data
was closer to a t-distribution with 8 degrees of freedom. However, even in the datasets where the
normality assumption did not fit the data well, JAMIE still outperformed the other algorithms
(e.g., see Figure 3). This suggests that the gain of JAMIE is reasonably robust to deviations from
this assumption.

Next, we explored the normality of Yid conditional on µid. For each dataset d, we first con-
structed pairs of IP and control samples. The real data we analyzed all contained the same
number of IP and control samples. For a dataset with K IP and K control samples, we con-
structed K IP/control pairs. For each pair k, we computed Zidk = Xid1k − Xid0k. Note that
Yid =

∑
k Zidk/K. We then computed the standard deviation of Zidks for each probe (we denote

it as sid), and the standardized residual eidk = Zidk−Yid
sid

. The normality of the standardized residu-
als eidk was checked using normal QQ plots. Since Yid is an average of Zidks, the normality of Zidk
implies the normality of Yid. Representative QQ plots from the Gli and DREAM data are shown
in the bottom panel of Figure S4. The Agilent data had only two replicates and the standardized
eidk was a constant. For this reason, QQ plots for the Agilent data were not available. The plots
suggest that the normality of Zidk (hence the normality of Yid) conditional on µid is a reasonable
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assumption that fits the real data well.

To summarize, our results show that the normality assumptions are reasonable in most cases.
In all real data analyses (including those where the normality assumptions were not met), JAMIE
performed better than or comparable to the other algorithms with respect to peak ranking (Figure
3). These results indicate that JAMIE is reasonably robust to deviations from the normality
assumptions. We note that deviations from the normality assumptions may cause biased estimate
of FDR, however as we discussed in the paper, accurate FDR estimation is not the primary goal of
JAMIE, and we recommend users to use qPCR to obtain more reliable FDR estimates whenever
possible.

B.2 Equal variance

JAMIE assumes that the noise and signal components of f(µid|Hid) (namely φ(µid; 0, τ2
d ) and

φ(µid;md, τ
2
d )) have equal variance τ2

d . Our initial design of JAMIE allowed unequal variances. In
other words, we initially used φ(µid; 0, τ2

d ) and φ(µid;md, ω
2
d) where τ2

d 6= ω2
d. With the unequal

variance assumption, we estimated τ2
d and ω2

d in the real data using an EM algorithm similar to
the one described in section A.2. The background standard deviation τd ranged from 0.3 to 0.4
in different datasets, and the signal standard deviation ωd ranged from 0.4 to 0.5. Therefore, in
real data, the variance of the signal and noise components are not equal.

However, we found that building JAMIE based on the unequal variance assumption caused
problems. In particular, the algorithm reported peaks with negative log2 IP/control fold changes.
This is because with unequal variances, the likelihood ratio between the peak and background
states is no longer monotone with respect to the log ratio, and as a result, a region with a large
negative log2 fold change can have higher probability to be classified as a peak as opposed to
background. This is undesirable since one expects that real peaks should contain probes with
positive log2 ratios.

To avoid this problem, we decided to force the two states to have equal variance. Although
this is an idealized assumption, our simulations (see Section B.6) and real data tests (e.g., Fig-
ure 3) show that our current implementation based on this assumption works well. In both real
data analyses and simulations where the equal variance assumption was not true, JAMIE ro-
bustly outperformed the other methods with respect to peak ranking. Similar to the normality
assumptions, deviations from this assumption may result in biased FDR estimates. We are cur-
rently exploring methods to model unequal variances τ2

d without incurring the monotonicity issue
above. Potential methods include using truncated normals or mixtures of normals (or mixtures
of t distributions) constrained in some way to guarantee monotonicity. These will result in more
sophisticated models. Developing a robust and computationally efficient algorithm to implement
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these models to handle the large amount of real data is not straightforward. This topic deserves
further investigation in future.

B.3 Independence

JAMIE assumes that µid and Yid from different probes are independent conditional on probes’
peak status Hid (see Formulas 1-2). To check whether this assumption is reasonable, we computed
the lag-1 autocorrelation of Yid in peak and background regions respectively. In the background
regions (i.e., regions not declared as peaks by JAMIE), the lag-1 autocorrelation ranged from 0.05
to 0.2 in different datasets. In the peak regions, the lag-1 autocorrelation ranged from 0.1 to 0.3.
These results suggest that conditional on Hid, there are weak correlations between neighboring
probes. Assuming conditional independence ignores these correlations. However, the assumption
simplifies the computation. For example, one can model correlations among probes by using a
multivariate normal distribution to jointly describe probe intensities within a peak. However, if
one uses this model, one needs to compute the inverse of a covariance matrix for each window,
which is computationally prohibitive in the typical ChIP-chip data. Our real data analyses showed
that even though there were weak correlations between probes, JAMIE performed better than
the other algorithms with respect to peak ranking (e.g., Figure 3). Like the other assumptions,
ignoring the between-probe correlations may result in biased estimates of FDR. Violations of
the conditional independence assumption may also result in biased estimates of peak length.
However, our simulations in section B.6 show that the peak length estimates provided by JAMIE
in the correlated data usually are reasonable, and they are better than or comparable to the peak
length estimates provided by the other algorithms. Therefore, we conclude that the conditional
independence assumption is an appropriate assumption to use from a practical point of view.

It should be pointed out that our model does not assume independence of Hids from different
probes. In fact, if a probe is a start of an active binding peak and if the peak is W bp long,
then all downstream probes within the W bps of the staring probe will be labeled as Hid = 1.
Clearly this implies dependence among probes. When we estimate parameters m and Ψ, we
did assume that probes’ hidden states are independent in order to derive a simple algorithm
(see Section A.2). However, this simplification is only used for estimating m and Ψ. After the
parameters are estimated, we no longer assume independence of Hids when we detect peaks.

B.4 Peak shape

In reality, ChIP-chip peaks tend to have a triangle or bell shape. This has not been reflected by
our current model. In triangular- or bell-shaped peaks, probes from the peak centers have stronger
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enrichment signals than those between the peak centers and flanking background regions. In our
current implementation of JAMIE, however, it is assumed that probe signals within a peak are
identically distributed. This implies that the peak shape is rectangular. Estimates of m based
on this assumption represent biased estimates of real peak heights (i.e., the peak maxima), since
both probes in the peak centers and those in the intermediate regions that rise from background
to peak centers are considered to be signals. This bias could affect the sensitivity of JAMIE and
the FDR estimation. The triangular- and bell-shaped peaks seen in reality could also affect the
peak length estimation, since probes on the peak boundaries have weak enrichment signals, and
it is difficult to distinguish them from background noise. Explicitly modeling the peak shape
has the potential to further improve JAMIE. This was not explored in our current paper, but is
worthwhile for future investigation.

B.5 Length of potential binding region

JAMIE asks users to specify the length (L) of PBR. This length is fixed in the peak detection. If
the PBR length does not match the real peak length, the algorithm’s sensitivity and specificity
may be affected, and the peak length estimates may be biased. In practice, however, this is not
a serious issue, since one can always perform exploratory analysis and visualize the data using
existing software tools such as Integrated Genome Browser or CisGenome. One can then specify
the PBR length to be the typical peak length (or a little longer than the typical length) observed
in the data.

B.6 JAMIE’s performance in simulations in which the assumptions are not

satisfied

We performed a series of simulations to test JAMIE’s performance when the model assumptions
were violated. Similar to the simulation presented in Section 4.1 of the main document, we added
simulated peaks to real input control data. As a result, probe intensity distributions and probe
correlations in background regions in the real data were all retained.

In the first simulation, PBRs were 1000 bp long, peak lengths were uniformly drawn from
U[300, 1000], and the peaks were rectangular. The true log fold changes (i.e., µids) of different
probes within the same peak were drawn from a multivariate normal distribution. The marginal
distribution of each µid was N(1, 0.25), and the pairwise correlation between any two probes’
µids within the same peak was 0.7. Since we used the real input control data as background,
the correlations among probes in the background regions were completely determined by the real
data. The variances τ2

d in the background regions were estimated to be around 0.09 in the real
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data. In this simulation, both the equal variance (τ2
d ) assumption and the assumption that µids

are independent conditional on Hids were violated.

Figure S5 shows the performance of various algorithms. Only one dataset is shown. Results
for the other datasets were similar. The analysis shows that JAMIE pooling still outperformed the
other three methods with respect to peak ranking, and JAMIE pooling still had higher sensitivity
compared to JAMIE single. At the same nominal FDR cutoff, JAMIE pooling also reported more
peaks than MAT, however this was partly due to the conservative FDR estimates provided by
MAT in this simulation. Compared to TileMap, JAMIE’s FDR estimates were more conservative,
but JAMIE pooling still reported more peaks (hence more sensitive) when the nominal FDR was
smaller than 0.08.

In the second simulation, peaks were simulated to have a triangle shape, and their heights (i.e.,
the maximal µid of each peak) were sampled from a uniform distribution U[0.5, 2]. The lengths of
the peaks were uniformly distributed between 300 and 1000 bps. For each peak, given the height,
width and peak center, µids of probes within the peak were computed deterministically according
to the triangle shape (rather than randomly and independently sampled from N(md, τ

2
d )), and

the µids were added to the original input probe intensities (which were normalized and log2
transformed). Other aspects of the simulation such as the PBR lengths were kept the same as the
previous simulation. In this new simulation, probe signals within each peak were not independent
conditional on Hid, the true peak shape was not the shape assumed by the JAMIE model, and
the distribution of µids within the peaks was no longer a normal distribution. Figure S6 shows
the performance of various algorithms in this new simulation. JAMIE pooling again performed
better than the other algorithms in terms of peak detection accuracy.

In the third simulation, peaks were triangular. Peak heights were drawn from a Gamma
distribution with mean of µid being 1, and variance of µid being 0.2. PBR lengths were 1500 bps,
and peak lengths were uniformly distributed between 300 and 1500 bps. When JAMIE was used
to detect peaks, the PBR length was set to L = 1000 bps, which did not match the real peak
lengths. The results are shown in Figure S7. Overall, JAMIE pooling still performed the best
with respect to peak ranking.

In addition to peak ranking and FDR, all the algorithms tested here provide start and end
coordinates of predicted peaks. Based on this information, one can compute the peak lengths.
We compared the peak length estimates of JAMIE pooling, MAT and TileMap to the true peak
lengths. Table S2- S5 listed the relative errors of peak length estimates. The relative error was
defined as (Estimated peak length - True peak length) / True peak length.

Table S2 shows the results for the simulation presented in Section 4.1 of the main manuscript.
Table S3 shows the results for the first simulation in the present section. These tables show that
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JAMIE was able to provide relatively accurate peak length estimates for rectangular peaks. The
estimates were slightly down biased, but the JAMIE’s estimates had smaller relative errors (in
terms of magnitude) than the errors of TileMap and MAT.

Table S4 shows the results for the second simulation in this section. In this simulation, peaks
were triangular. Compared to Table S2 and S3, the peak length estimates of JAMIE showed bigger
negative biases. This was likely due to the fact that probes at the boundaries of triangular peaks
tend to have weak enrichment signals which made it difficult to distinguish them from noise. In
this simulation, the TileMap peak length estimates had the smallest bias (in terms of magnitude),
the bias associated with JAMIE’s estimates were intermediate, and the length estimates of MAT
had big positive biases.

Table S5 shows the results for the third simulation in this section. Here the peaks were
triangular and the PBR length used to detect peaks was smaller than the true peak lengths.
Similar to Table S4, JAMIE’s length estimates were negatively biased. This was partly due to the
triangle peak shape and partly due to the incorrect specification of the PBR length. However,
compared to the other algorithms, JAMIE’s estimates were still quite reasonable. In fact, it had
smaller biases in most length intervals compared to MAT.

Finally, it should be pointed out that in practice, one can obtain high resolution (usually a
few base pairs) predictions of TFBSs from ChIP-chip data by performing de novo motif discovery
or by mapping known transcription factor binding motifs to the peak DNA sequences. For this
reason, accurately estimating the peak lengths is relatively less important compared to accurately
identifying the peak locations. We therefore conclude that the bias of JAMIE’s peak length
estimate was within a reasonable range from a practical point of view.

Together, the simulation results in this section showed that JAMIE performed reasonably well
when the model assumptions were violated, and it robustly outperformed the other algorithms
with respect to peak ranking. This observation was consistent with the real data analyses, in
which JAMIE consistently showed favorable performance. In terms of peak length estimates,
JAMIE also performed reasonably well compared to the other algorithms.

C Summary of datasets used in the real data tests

We performed three real data tests. Table S6 lists the data used in these tests. The first test
involved three ChIP-chip datasets for detecting TFBSs of OCT4, SOX2 and NANOG in human
embryonic stem (ES) cells (Boyer et al., 2005). The data were generated using Agilent promoter
tiling arrays (ArrayExpress: E-WMIT-5) and is called “Agilent data” in the paper. Each dataset
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contained two replicates. The average log2(Cy5/Cy3) ratio were used as Yid in our analysis. The
three TFs were previously known to cooccupy many human promoters, although each TF also
had their own specific binding sites. The second test (“Gli data”) contained four Gli datasets
generated on Affymetrix mouse promoter 1.0R arrays (GEO: GSE11062, GSE17682). The data
were produced by two labs to map TFBSs of Gli1 and Gli3 in different developmental and patho-
logical contexts. Each dataset had 3 IP and 3 control samples. The third test (“DREAM data”)
involved four datasets (GEO: GSE7516) on Affymetrix human promoter 1.0R arrays. The data
were used to identify DNA binding of a p130 complex termed DREAM (DP, RB-like, E2F, and
MuvB) (Litovchick et al., 2007). It was reported that the DREAM complex binds to more than
800 human promoters in G0 phase of the cell cycle, but dissociates in S phase. ChIP-chip was
performed to detect binding sites of four proteins, including p130, E2F4 and the mammalian
homologs of synMuvB proteins LIN9 and LIN54. Our test analyzed the four binding datasets in
G0-arrested cells. Each dataset had 3 IP and 3 control samples. All data were quantile normalized
before processing.

D Motif enrichment in detected peaks in real data

Figures S9-S14 compare the motif contents in the detected peaks in the three real data tests. In
all figures, X-axis is the number of top ranked peaks. Y-axis is the percentage of peaks with at
least one motif site. Figure S9 shows the enrichment of Oct4 motif in peaks from Agilent data
(Boyer et al., 2005). Figure S10 shows the enrichment of Gli motif in peaks from Gli data (Vokes
et al., 2008). Figures S11-S14 shows the enrichment of four different motifs in peaks detected
from DREAM data: E2F4, nMyc, NRF2 and CREB (Litovchick et al., 2007). These results show
that the peaks detected by JAMIE pooling have higher or similar motif content compared with
peaks detected from other methods.
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E Supplementary Tables

Table S1: Control files used in simulation

Dataset GEO accession number

1 and 2 GSE12283

3 and 4 GSE11062

Table S2: Average relative errors of the peak length estimates in the simulation in Section 4.1

Relative error (%)

True peak length (bp) JAMIE MAT TileMap

(300,600] -2.6 179.6 28.5
(600,800] -9.0 113.7 10.3

Table S3: Average relative errors of the peak length estimates in the first simulation in Section B.6

Relative error (%)

True peak length (bp) JAMIE MAT TileMap

(300,600] -5.7 186.7 26.6
(600,800] -8.3 115.4 16.8

(800,1000] -8.6 97.5 12.6
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Table S4: Average relative errors of the peak length estimates in the second simulation in Sec-
tion B.6

Relative error (%)

True peak length (bp) JAMIE MAT TileMap

(300,600] -17.3 172.2 17.0
(600,800] -30.4 108.6 -0.1

(800,1000] -36.0 72.3 -9.1

Table S5: Average relative errors of the peak length estimates in the third simulation in Section B.6

Relative error (%)

True peak length (bp) JAMIE MAT TileMap

(300,600] -24.2 168.3 21.0
(600,900] -42.0 93.5 -10.5

(900,1200] -47.2 61.6 -21.7
(1200,1500] -53.9 34.2 -29.2

Table S6: Real datasets used in the paper

Dataset Accession number Platform Reference

Agilent data ArrayExpress Agilent Human Boyer et al. (2005)
E-WMIT-5 promoter 44k

Gli data GEO GSE11062 Affymetrix mouse Vokes et al. (2008)
GSE17682 promoter 1.0R Lee et al. (2010)

DREAM data GEO GSE7516 Affymetrix human Litovchick et al. (2007)
promoter 1.0R
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F Supplementary Figures

Figure S1: Comparisons of peak detection accuracy of different methods (JAMIE pooling, JAMIE
single, TileMap and MAT) in four simulated datasets. X axis is number of top ranked peaks. Y
axis is the percentage of peaks being true positives.
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Figure S2: Comparisons of peak detection sensitivity at various nominal FDR cutoffs. X axis is
the nominal FDR. Y axis is the number of peaks reported.
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Figure S3: Comparisons of observed versus nominal FDRs of different methods in four simulated
datasets.
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Figure S4: Normal QQ plots for checking normalities of µid and Yid|µid.

Figure S5: Simulation results when peaks are rectangular, probes within a peak are correlated,
and the equal variance assumption does not hold true.
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Figure S6: Simulation results when peaks are triangular and peak heights follow a uniform dis-
tribution.

Figure S7: Simulation results when peaks are triangular and peak heights follow a Gamma dis-
tribution.
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Figure S8: Comparisons of peak detection consistency of JAMIE pooling, JAMIE single, TileMap
and MAT in three real ChIP-chip data. This figure compares the self-consistency of different
algorithms in the three real data tests. For each test, each of the four algorithms was applied to
the reduced data and compared to the gold standard constructed by itself using full data (i.e.,
all replicates). For each dataset in the test, the number of peaks in the gold standard was kept
the same for all algorithms and was chosen as the minimal number of peaks reported by the four
algorithms at the 30% FDR cutoff. X-axis is the number of top ranked peaks. For each algorithm,
the Y-axis shows the average percentage of correct detections, where correctness is evaluated by
the gold standard. The first row shows the results for Agilent data, the second row is for Gli
data, and the third row is for DREAM data. JAMIE pooling shows the best overall results with
respect to peak detection consistency.

23



Figure S9: Percentage of peaks with at least one Oct4 motif in the Agilent data.
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Figure S10: Percentage of peaks with at least one Gli motif in the Gli data. The motif enrichment
in the Gli3 dataset is higher than the other three Gli1 datasets. This has several possible expla-
nations. First, it was observed that the Gli3 Limb data had higher signal-to-noise ratio which
might be due to technological reasons such as protocols or quality of antibodies. Owing to the
high signal-to-noise ratio, it is reasonable to expect that, at the same rank level, peaks detected
from this dataset are more likely to be true binding sites. Second, it is also possible that in vivo
binding of Gli3 to the Gli motif has stronger affinity than Gli1 binding. Computationally we
cannot tell which one is the true explanation behind the observed differences in motif enrichment.

25



Figure S11: Percentage of peaks with at least one E2F4 motif in the DREAM data.
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Figure S12: Percentage of peaks with at least one nMyc motif in the DREAM data.
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Figure S13: Percentage of peaks with at least one NRF2 motif in the DREAM data.
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Figure S14: Percentage of peaks with at least one CREB motif in the DREAM data.
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